Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
A stationary testing method and a porous media flow reactor method were used for these studies. The effect of different NRB, including NO2NRB and sulfide-oxidizing NRB (SONRB) on corrosion of carbon steel beads in the presence and absence of nitrate was also investigated using porous media flow reactors.
Controlling reservoir souring is critical to successful production and asset protection in hydrocarbon recovery. Nitrate injection has been widely used in water flooding as a primary barrier for controlling biologically generated sulfide in oil reservoirs. Souring control via nitrate implementation is dynamically affected by the interactions between nitrate-reducing bacteria (NRB) and sulfate-reducing bacteria (SRB). Resultantly it is important to understand how the community profile and the availability of electron acceptor/donor in the environment controls the effectiveness of nitrate on SRB growth sulfide levels and corrosion.In laboratory studies the efficacy of nitrate treatments were evaluated on SRB (with or without nitrate-reducing capability) combined with various NRB including denitrifiers (reduce nitrate to N2) nitrite-producing NRB and sulfide-oxidizing NRB in the presence of different concentrations of electron acceptor/donor of these bacteria. Stationary and porous media flow reactor methods were used for these studies and sulfide concentrations and viable SRB counts were measured during and or after each treatment. The effect of microbial composition on corrosion of carbon steel beads in the presence and absence of nitrate was also investigated using porous media flow bioreactors. It was found that the effectiveness of nitrate on SRB growth sulfide level and metal corrosion can be dramatically affected by the types of SRB and NRB present in the testing system. The corrosion studies illustrate that sulfide control via nitrate treatment doesn’t necessarily reduce corrosion risks. Microbial activities and metabolites other than sulfide can also play important roles on the corrosion results. These studies indicate that the effectiveness of nitrate treatment in the field can be impacted by both biotic and abiotic factors which need to be considered when designing nitrate treatment strategies.
Key words: Souring, nitrate, nitrate-reducing bacteria, sulfate-reducing bacteria
In this paper we describe a case study in which we compared several available methods including viabilitypolymerase chain reactionfor measuring the effectiveness of biocide treatment.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.