Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Ta coatings were cold sprayed onto carbon steel and exposed to two different solutions: (i) synthetic seawater and (ii) aqueous 15% HCl to test the suitability to mitigate the corrosion of the substrate.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The stability of buffer solutions for martensitic stainless steel OCTG material was experimentally evaluated by the scratch repassivation technique in electrochemical measurements.
A research methodology has been employed to quantify the dynamic effects of anodic transients on CP and corrosion by means of an electrochemically integrated multi-electrode array, often referred to as the wire beam electrode (WBE).
Corrosion is a surface phenomenon, which is defined as the deterioration of a material due to chemical and/ or electrochemical reactions. The continued interest in understanding corrosion phenomena and devising mitigation methods stems from the potential influence corrosion has on infrastructural damage across diverse industries. The most prevalent forms of corrosion encountered in the oil and gas industry are referred to as sweet and sour, corresponding to aqueous CO2 and H2S environments, respectively. The presence of an aqueous phase in these environments leads to the formation of a weak acid which is understood to be detrimental to the service life of carbon steel pipelines, when not properly mitigated.
Several studies have focused in the past on the precipitation mechanism of iron carbonate (FeCO3), which is the dominant corrosion product in CO2 environments observed in the oil and gas industry. The dissolved CO2 species undergo a series of chemical reactions and react with the oxidized iron ions forming FeCO3 as the primary corrosion product. In the past, the thermodynamics of each of these reactions have been thoroughly studied and modified by incorporating the effects of temperature and non-ideality.
The corrosion of aircraft costs the U.S. Department of Defense billions of dollars annually and accounts for a significant portion of maintenance time and costs.1 Coatings are the most effective way to protect aircraft, but they have a finite lifetime and must be maintained or replaced before the underlying substrate is damaged by corrosion. Current aircraft maintenance practices call for coating inspections and maintenance based on elapsed time and not on measurements of coating health. Coating lifetime varies depending on the environmental stressors experienced in service, including temperature, humidity, and salt loading.
The corrosion of aircraft costs the U.S. Department of Defense more than $20 billion annually and accounts for approximately 20% of all maintenance. Coatings are the most effective way to protect aircraft, but they have a finite lifetime and must be maintained or replaced before the underlying substrate is damaged by corrosion. Current aircraft maintenance practices call for coating inspections and repairs based on elapsed time and not on measurements of coating health.