Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

51318-10586-Mechanistic study of microbiologically influenced corrosion

This study demonstrates that the mechanisms of microbiologically influenced corrosion (MIC) by Desulfovibrio vulgaris, a sulfate reducing bacterium (SRB), against X65 carbon steel and pure copper belong to two different types of MIC.

Product Number: 51318-10586-SG
Author: Jialin Liu / Wenwen Dou / Ru Jia / Xiaogang Li / Sith Kumseranee / Suchada Punpruk / Tingyue Gu
Publication Date: 2018
$0.00
$20.00
$20.00

This study demonstrates that the mechanisms of microbiologically influenced corrosion (MIC) by Desulfovibrio vulgaris, a sulfate reducing bacterium (SRB), against X65 carbon steel and pure copper belong to two different types of MIC. Type I MIC involves extracellular electron transfer across cell walls of sessile cells in biofilms. This type of MIC is also called extracellular electron transfer MIC (EET-MIC). Type II MIC, also known as metabolite MIC (M-MIC), is caused by secreted corrosive metabolites that are more concentrated locally under a biofilm. The corrosive metabolites secreted by planktonic cells can also contribute to Type II MIC. The metabolites oxidize metals extracellularly without biocatalysis or EET. Experimental data in this work show that 20 ppm (w/w) riboflavin, a universal electron mediator, did not enhance sessile cell growth, but it accelerated EET-MIC by D. vulgaris in the ATCC1249 medium against X65 carbon steel with a 90% increase in weight loss and a 284% increase in the average maximum pit depth. However, 20 ppm riboflavin did not increase copper MIC, because copper MIC by SRB was due to secreted metabolites (i.e., M-MIC) rather than the direct result of sulfate reduction. This work also shows that copper MIC weight loss caused by the SRB was at least one order of magnitude higher than that of X65 carbon steel even though the SRB sessile cell count on copper was 10 times lower.

Key words: microbiologically influenced corrosion, mechanism, biofilm, Desulfovibrio vulgaris, carbon steel, copper

This study demonstrates that the mechanisms of microbiologically influenced corrosion (MIC) by Desulfovibrio vulgaris, a sulfate reducing bacterium (SRB), against X65 carbon steel and pure copper belong to two different types of MIC. Type I MIC involves extracellular electron transfer across cell walls of sessile cells in biofilms. This type of MIC is also called extracellular electron transfer MIC (EET-MIC). Type II MIC, also known as metabolite MIC (M-MIC), is caused by secreted corrosive metabolites that are more concentrated locally under a biofilm. The corrosive metabolites secreted by planktonic cells can also contribute to Type II MIC. The metabolites oxidize metals extracellularly without biocatalysis or EET. Experimental data in this work show that 20 ppm (w/w) riboflavin, a universal electron mediator, did not enhance sessile cell growth, but it accelerated EET-MIC by D. vulgaris in the ATCC1249 medium against X65 carbon steel with a 90% increase in weight loss and a 284% increase in the average maximum pit depth. However, 20 ppm riboflavin did not increase copper MIC, because copper MIC by SRB was due to secreted metabolites (i.e., M-MIC) rather than the direct result of sulfate reduction. This work also shows that copper MIC weight loss caused by the SRB was at least one order of magnitude higher than that of X65 carbon steel even though the SRB sessile cell count on copper was 10 times lower.

Key words: microbiologically influenced corrosion, mechanism, biofilm, Desulfovibrio vulgaris, carbon steel, copper

Also Purchased