Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
An analytical approach that can discriminate between various forms of microscopic corrosion initiation has been employed in natural gas gathering and storage facilities. Information provided by the analysis of electron microscope coupons has led toward the better understanding and diagnosis of the initial stages of internal corrosion in natural gas gathering and storage facilities.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The rapid and unexpected failure of AISI type 304 stainless steel in a wastewater treatment system was investigated in the laboratory by simulation studies for a period of 4 months. Slime and water samples from the failure site were screened for corrosion causing bacteria.
Based on tubulars retrieved from Halfdan producing wells with low CO2 and H2S content an under deposit corrosion mechanism has been suggested involving multiple parameters including scale buildup microbiologically influenced corrosion (MIC) and the formation of green rust.
Biocorrosion or microbiologically influenced corrosion (MIC) is a major problem in the oil and gas industry. Biofilms are the culprits of MIC. In this work, D-amino acids were used to enhance two biocides, alkyldimethylbenzylammonium chloride (ADBAC) and tributyl tetradecyl phosphonium chloride (TTPC), to treat a field biofilm consortium on C1018 carbon steel coupons.
Fusion bonded epoxy (FBE) coatings protect the underlying metal from corrosion. The lack of research on the microbial impact of pipeline coating failures leaves a significant knowledge gap. We analyzed two FBE coating samples from buried steel transmission pipelines with unusually rapid external pitting.
Corrosive biofilm formation on metal surfaces can have serious impacts. Through this proof of concept research project we established and maintained MIC biofilms for testing with various enzyme preparations. After two months of incubation in a bioreactor inoculated with a consortium of MIC microorganisms, the presence of corrosive MIC biofilms were confirmed on steel coupons.
A combination of carbon and stainless steel probes and coupons was used to evaluate microbiologically influenced corrosion (MIC) in humid air and determine whether dry storage systems (DSSs) could be affected by MIC during extended storage.
Two types of corrosion cause the majority of problems in offshore or seawater applications; aqueous corrosion and microbiologically influenced corrosion (MIC). To combat MIC, a novel combination of antimicrobial powder and high-density polyethylene powder was applied through rotational lining.
This study used untreated pond water containing corrosive anions and MIC-causing bacteria as an accelerated testing environment to explore the feasibility of nitrogen as a deoxygenation gas to mitigate corrosion of sprinkler pipes.
A commercial cellulose-based polymer (carboxymethyl cellulose sodium) was tested to see whether it could be utilized by an oilfield biofilm consortium including sulfate reducing bacteria.
This study demonstrates that the mechanisms of microbiologically influenced corrosion (MIC) by Desulfovibrio vulgaris, a sulfate reducing bacterium (SRB), against X65 carbon steel and pure copper belong to two different types of MIC.
Some 1,401 underground diesel storage tanks were analyzed for average maximum pit depths over the years 2003 till 2016. The results showed that since the addition of biodiesel the average pit depth increased due to Microbiologically Influenced Corrosion (MIC).