Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Among the many additive manufacturing processes, Wire Arc Additive Manufacturing (WAAM) has recently been drawing interest due to its great and attractive prospect for fabrication of large parts, the possibility to process a vast range of materials in form of welding wires, and the addition of further details to semi-finished components [1]. However, most of the research have currently focused on optimization of the WAAM process parameters and analysis of the resulting thermal and residual stresses [2]. Unlike conventional manufacturing processes, WAAM process and post-processing treatments result in unique microstructures and material surfaces that alter the corrosion performance of the materials but are not fully studied or understood yet.
To develop the commercial applicability of Wire-Arc Additive Manufacturing (WAAM), there is a crucial need to understand the corrosion behaviour of the fabricated materials for industry acceptance. It is wellknown that WAAM process has a complex thermal process, resulting in unique microstructures and material surfaces. The current studies on corrosion resistance in the WAAM process are focused on Stainless Steels, Steels and Nickel-based alloys due to the potential industrial applications. Hence, a comprehensive review of the resulting microstructural evolution and corrosion resistance of the WAAM manufactured Stainless Steels, Steels and Nickel-based alloys has been presented.
AM brings significant benefits in better performance, inventory management, and lifecycle cost reduction to the Oil & Gas industry. Both manufacturers and users are working towards AM qualification and standardization in order to realize and sustain these benefits. Starting at the product level, the goal is to ensure the product is sound in its form, fit, and function, and free from macroscopic (surface, sub-surface, internal) anomalies deleterious to its performance. Product qualification is supported by a foundational metallurgical or AM material qualification.1
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The overall goal was to determine if a set of additive manufacturing (AM) parts could comply with the testing requirements of wrought or welded materials for sour service as outlined in NACE MR0175 / ISO 15156-3:2015. Recommendations for a qualification pathway for AM parts in sour service are included.
Seawater injection is commonly utilized for offshore wells to maintain or increase oil production; however, treatment for seawater before injection is always necessary to reduce or remove bacteria, dissolved oxygen, sulfate, and other impurities. Seawater typically has >2000 mg/L sulfate. Without proper sulfate removal, such high levels of sulfate can cause not only barium sulfate, strontium sulfate, and calcium sulfate scales, but also reservoir souring and H2S corrosion in the presence of sulfate reducing bacteria (SRB). Therefore, sulfate removal from seawater is critical before seawater injection into reservoir.