Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
The quality of indirect inspection data is critical in an External Corrosion Direct Assessment (ECDA). The need exists to increase the accuracy of the field data collection, to improve the data processing and to effectively present the results. This paper describes several challenges.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The monolithic isolation joint is a sealed system, which obscures the individual components inside. How does one perform due diligence on a sealed, discrete system to ensure it will serve well over the asset lifecycle? We will set out a 5 section regimen.
Corrosion resistant alloys (CRAs) are used for many pipeline and wellhead components associated with oil and gas production environments but may be considered too costly for longer crude oil and natural gas production lines. Mitigation of internal corrosion for these types of pipelines is normally carried out by batch treatment or continuous injection of corrosion inhibitors, especially the surfactant type of organic inhibitors, which are more economical than using a CRA.
The study of pitting susceptibility of carbon steel exposed to slightly sour service environment is conducted by using direct current and electrochemical impedance (IES). The test matrix is designed considering the oxidizing potential of the seawater as the independent variable.
Besides economic considerations, ecological and regulatory factors play an increasingly decisive role nowadays in the formulation of innovative coating systems. It is therefore no surprise that the call for zinc-free anti-corrosive pigments or those that do not require labeling has steadily increased in recent years. Zinc-free technology is not new. Numerous pigments based on calcium, strontium, aluminum, and magnesium phosphate have been available on the market for a long time.
Over the years there have been several different corrosion modelling software packages developed to provide predicted (estimated) corrosion rates for use in the oil & gas industries. Many are based on the original work of DeWaard & Milliams which provided a best-fit statistical model to corrosion rates measured in flow loop laboratory tests conducted at the IFE (Institutt For Energiteknikk) in Norway ; covering (initially) just partial pressure of CO2, temperature, liquid flow velocity and pH (typically as bicarbonate and dissolved CO2).
Traditional paper documentation leads to several issues in both the field and home office. Paper documentation processes cause compliancy problems, poor data entry, and difficult communication between employees. Keeping data secure can also be problematic with paper reporting leading to inefficiency.
While real time outdoor weathering exposures in benchmark climates, such as South Florida, are highly recommended for determining coating performance and service lifetimes, the lengthy test times required are often problematic. Therefore, outdoor and laboratory artificial accelerated weathering testing has become a mainstay in coatings testing, particularly in the product development phase.
During the winter of 2013-2014, Northern California experienced unusually cold temperatures (below 40°F). These low temperatures delayed Pacific Gas & Electric Company (PG&E) coating operations on new pipelines. Since liquid epoxy coatings capable of being applied at, or which fully cure at, temperatures below 50°F were not approved, PG&E chose to control the environment using small enclosures over the application area. This approach proved to be expensive and time consuming, so a novel method of pipeline surface temperature control was necessary to allow application of liquid epoxies at low ambient temperatures.