Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
ASTM Grade 29 titanium alloy (UNS R56404) has been traditionally used for oil and gas stress joints (TSJ). However, given the general difficulty of processing this type of alloy in the beta quenched condition and more recently the exorbitant increase in alloying costs due to the ruthenium, a new solution is required if titanium is to be considered for future applications. This 475 alloy was developed to meet geothermal requirements to replace Grade 29 seamless casing. The essential material properties of Grade 29 in bulk and welded condition as used for titanium stress joints were reported by Shutz et al.
A new titanium alloy, TIMETAL® 475 (Ti-475), which was developed for use in aggressive geothermal fields as a casing material, has been tested for use in typical oil and gas environments. The alloy composition, Ti-0.4Ni-3.75Mo-0.75Zr, provides excellent corrosion resistance in geothermal brines which are low pH and high in chlorides. For oil and gas applications, the additional effects of H2S and CO2 on the alloy must be considered. To this end, the alloy was subjected to the NACE TM-0177 Level VII exposure test. For the geothermal application, the alloy is prepared in the Solution Treated and Aged (STA) condition with a typical titanium bimodal microstructure. For use in oil and gas, the alloy is prepared in the Beta Annealed condition. The beta annealed condition is required for large components such as titanium stress joints where superior fatigue properties are required. This paper reviews the mechanical properties and corrosion evaluation of the Ti-475 alloy in the beta annealed condition as compared to the STA condition.
Pre-commissioning hydrostatic testing of pipelines and the resulting corrosion (MIC) issues are often linked to test water quality, as well as post-test cleaning operations. In a 1998 study, it was reported that localized corrosion (pitting/crevice corrosion) accounted for 20% of failures in the chemical process industry with an estimated one half of those being MIC failures. Identification of MIC failures is not straightforward. Common characteristic features such as pit clustering, “tunneling” of pits, tuberculation, high microbiological counts, presence of sulfides (in the case of sulfate reducing bacteria (SRB)) and preferential weld attack have been used to anecdotally pinpoint field failures towards MIC.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.