Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The electrochemical behavior of UNS(1) N08031 was investigated as a function of electrode potential in Green-Death(2) solution at 40 °C.
The electrochemical behavior of UNS(1) N08031 was investigated as a function of electrode potential in Green-Death(2) solution at 40 °C. The UNS N08031 surface is in a stable passive state during cyclic potentiodynamic polarization without an initiation and/or propagation of localized corrosion. In potentiostatic polarization of UNS N08031 for 3600 s, passive current density increases with an increase in the passivation potential from 0.7 to 1.0 VSSE (silver/silver chloride reference electrode in saturated potassium chloride) Electrochemical impedance spectroscopy (EIS) and Mott-Schottky (M-S) analysis showed that a more defective n-type semiconductive passive film forms as the potential increases. X-ray photoelectron spectroscopy (XPS) revealed that passive film consists of mainly chromium and minor iron and nickel oxides. The mechanism of the defective passive film formation is discussed. The increase of the applied potential is considered to be a reason for the change in passive film stability.
Key words: Steel, Passive film, X-ray photoelectron spectroscopy
Specimens of 12Cr martensitic stainless were annealed, tempered and shot-peened – then artificially pitted. Through a variety of tests, it was determined that the advantages of shot-peening are mostly retained after pitting.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Pitting corrosion of these steels in a high-temperature, high-CO2, low-H2S, and high-Cl- environment was investigated by scanning electron microscope (SEM), energy dispersive detector (EDS) and X-ray diffraction (XRD).
Ferrite measurements are used during welding procedures on duplex stainless steel. We studied the effects on the measured ferrite contents of (1) grid size, (2) number of fields and (3) measurement locations.