Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

51318-11177-Effect of Mechanical Stress and Environmental Conditions on Degradation of Aerospace Coatings that G

Test methodologies for protective coatings of aircraft are analyzed and evaluated in a variety of conditions. Mechanisms and kinetics of damage progression are quantified using in situ measurements of coating system properties.

 

Product Number: 51318-11177-SG
Author: Patrick Kramer / Kristen S. Williams / Karen A. Schultz / Fritz Friedersdorf / David A. Jackson / Thai Sweitzer
Publication Date: 2018
$0.00
$20.00
$20.00

The most effective means to control atmospheric corrosion of aircraft is through the use of protective coatings. In addition to combating corrosion, which represents a risk to the safe operation of an asset, there are strong economic and environmental drivers to extend the service life of aerospace coatings. Repair and replacement of exterior coating systems that no longer meet protective requirements generate a significant volume of environmentally hazardous waste, which includes the coating material, media used for coating removal, as well as the waste materials generated in surface preparation and reapplication of the coating system. Development and use of the most durable coatings systems has often been limited by the ability to predict service performance in accelerated tests. Existing accelerated test techniques do not adequately employ the chemical, thermal, or mechanical stressors that produce relevant damage mechanisms, such as cracking at structural discontinuities in coated airframes. Additionally, single coating layers may be qualified individually rather than as part of a representative multilayer stack-up. As a result, current test methods cannot be used for accurate quantification of coating performance and service life. In this work, test methodologies previously described that employ combined environmental and mechanical loading modes are utilized to excite relevant failure modes of a multilayer system, such as coating cracking at sealant-filled lap joints. The mechanisms and kinetics of damage progression are quantified throughout static and dynamic atmospheric tests using in situ measurements of coating system properties. It is observed that the coating barrier properties and resistance to cracking at a lap joint are dependent upon both the individual effects of stress, temperature, and humidity as well as the combined interaction effects of these stressors.

Key words: Coating performance, coating cracking, accelerated testing, in situ monitoring, mechanical stress

 

 

The most effective means to control atmospheric corrosion of aircraft is through the use of protective coatings. In addition to combating corrosion, which represents a risk to the safe operation of an asset, there are strong economic and environmental drivers to extend the service life of aerospace coatings. Repair and replacement of exterior coating systems that no longer meet protective requirements generate a significant volume of environmentally hazardous waste, which includes the coating material, media used for coating removal, as well as the waste materials generated in surface preparation and reapplication of the coating system. Development and use of the most durable coatings systems has often been limited by the ability to predict service performance in accelerated tests. Existing accelerated test techniques do not adequately employ the chemical, thermal, or mechanical stressors that produce relevant damage mechanisms, such as cracking at structural discontinuities in coated airframes. Additionally, single coating layers may be qualified individually rather than as part of a representative multilayer stack-up. As a result, current test methods cannot be used for accurate quantification of coating performance and service life. In this work, test methodologies previously described that employ combined environmental and mechanical loading modes are utilized to excite relevant failure modes of a multilayer system, such as coating cracking at sealant-filled lap joints. The mechanisms and kinetics of damage progression are quantified throughout static and dynamic atmospheric tests using in situ measurements of coating system properties. It is observed that the coating barrier properties and resistance to cracking at a lap joint are dependent upon both the individual effects of stress, temperature, and humidity as well as the combined interaction effects of these stressors.

Key words: Coating performance, coating cracking, accelerated testing, in situ monitoring, mechanical stress

 

 

Also Purchased