Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
In the oil and gas industry, the major standard for material selection today is ANSI1/NACE2 MR0175/ISO 15156 Parts 1-3. [1] While this standard deals extensively with environment cracking and its prevention for materials under exposure to production environments containing H2S, CO2, chlorides, and sulfur, it does not include any guidance or material requirements for resistance to environmental cracking (such as hydrogen stress cracking – HSC, or otherwise) under variable subsea conditions that involve exposure to seawater with varying levels of cathodic protection (CP). ISO 21457 [2] provides further guidance for materials selection and corrosion control for oil and gas production systems but does not provide adequate coverage of the issue of environmental cracking in subsea applications with CP.
In the oil and gas industry, the major standard for material selection today is ANSI1/NACE2 (now AMMP3) MR0175/ISO4 15156 Parts 1-3. This standard deal extensively with environmental cracking and its mitigation under exposure to sour production environments containing H2S, CO2, chlorides, and sulfur. Unfortunately, it does not include material requirements for resistance to environmental cracking under variable subsea applications and conditions that may involve exposure to seawater with or without cathodic protection (CP). Also, ISO 21457 and several other standards identify the corrosion mechanisms and parameters for evaluation when performing selection of materials for pipelines, piping and equipment related to hydrocarbon production, transport and processing, including utility and injection systems; however, they do not address in detail aspects of environmental cracking that can be associated with use of CP in subsea operations. This lack of attention in industry standards is somewhat surprising since exposure of materials to subsea conditions with cathodic protection and the potential for environmental cracking has been documented in the literature for over 50 years.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper discusses a study wherein the SSC resistance of 13Cr bar stock quenched and tempered to 22 HRC maximum hardness was tested and evaluated beyond the maximum H2S limit of 10 kPa (1.5 psi) established in NACE MR0175/ISO 15156-3 for use in sour service.