Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The influence of sulfur as H2S-addition on the stability or degradation of tube materials and on the coke formation was studied. The investigated samples were alumina-forming- as well as chromia-forming alloys taken from conventional radiant tubes.
Radiant coils in steam-cracking furnaces operate under severe reducing and oxidizing conditions at temperatures even beyond 1100 °C. Sulphur is present in feedstocks as natural constituent (naphtha cracking) or as deliberate addition (ethane cracking), and can influence the coke formation and also the stability of tube materials.
The influence of sulfur as H2S-addition on the stability or degradation of tube materials and on the coke formation was studied. The investigated samples were alumina-forming- as well as chromia-forming alloys taken from conventional radiant tubes. In a laboratory-scale reactor comparative cracking-decoking tests were applied to the samples. Testing conditions were relevant to industrial steam cracking. Sulfur was continuously added as H2S to the synthetic feed. Sample temperature could be varied during cracking up to 1100 °C. The influence of continuous H2S addition to the feed on coke formation and on the tube material deterioration was studied. The investigations reflect the impact of sulfur on the rate of coke formation and on the coke morphology. Particular focus is on how sulfur influences the physical and chemical nature of catalytically active sites. Sulphur stimulates a process of carbon-induced corrosion, which particularly can deteriorate chromia-forming alloys, whereas alumina scales are resistant.
Key words: Steam-cracking, sulfur, catalytic coking, high-temperature corrosion, coil material, alumina scale, chromia scale, high-temperature material
Static exposure tests of pre-oxidized stainless steel and carburized chromium were conducted in the molten fluoride salt, LiF-NaF-KF (46.5-11.5-42 mol %), FLiNaK to simulate the corrosion environment typical of some advanced nuclear reaction concepts.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper presents new applications of Volatile Corrosion Inhibitors (VCI) inside new and/or existing out-of-service pipelines. The system utilizes a combination of soluble and volatile corrosion inhibitors that are directly applied into the pipeline.
High strength UNS S31010 with 140 ksi MYS has been produced by warm work hardening and cold work hardening. The characterization of high strength alloy with respect to corrosion resistance is discussed in this paper.