Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Impressed current rectifiers are the backbone of a pipeline operator’s cathodic protection (CP) systems. A rectifier’s ability to protect a large length of electrically continuous pipeline considerably improves efficiencies and reduces material costs as compared to galvanic systems. However, like galvanic anodes, impressed current anodes are a consumable asset, and require replacement at the end of their service life to ensure that the rectifier can continue to adequately protect the pipeline.
We explore how rectifier voltage and current measurements can inform pipeline engineers and technicians on the health, performance and operation of their cathodic protection (CP) assets, and predict the future operation of existing and newly installed cathodic protection systems. We leverage years of data from monitoring units installed on CP rectifiers combined with site specific details describing the site and its CP system provided by pipeline operators to train a machine learning model.
The study includes current and historical data from hundreds of unique rectifier locations across Canada which have been historically monitored using a remote monitoring unit (RMU). RMU readings are analyzed and grouped by long term resistance trends. Contextual data is collected for each site. This data describes the cathodic protection relevant details of the site, including details of the pipe, rectifier, groundbed and soil.
A machine learning model has been developed which accepts the contextual data associated with the rectifier and will predict the long-term rectifier resistance trend.
Oil and gas buried pipelines are protected against corrosion by both organic coatings, a passive protection system, and cathodic protection, an active protection system. When coating defects occur, CP controls the corrosion of the exposed steel surface. From an operating point of view, cathodic protection interruptions can occur on the network during interventions, consignments, or technical problems. Literature indicates that during CP interruption the corrosion rate of the metal remains lower than its free corrosion rate. Application of CP confers a remanence of protection to the metal. The objective of this study is to determine the safe duration for cathodic protection interruptions depending on environmental and cathodic protection conditions.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The electrical conductivity of the electrolyte is one of the key parameters in the electromechanics of corrosion. Highly conductive electrolytes will permit more current and increase corrosion rates. Conversely, resistive electrolytes will enable less current to flow until the necessary conditions for corrosion are no longer satisfied or slowed.
There are several ways to validate the performance of a cathodic protection (CP) system for buried pipelines. Over the years, pipeline networks and their corrosion challenges have become increasingly complicated, not least due to the many sources of both AC and DC interference that affects CP operation. Also, the various measurement techniques that can be applied to test CP effectiveness has increased over the years. Finally, the sheer number of buried pipeline miles has been constantly increasing.