Search
Filters
Close

Analytical Method to Detect and Remediate Zinc Contamination of Austenitic Stainless Steels to avoid Liquid Metal Embrittlement

As construction of an industrial plant was nearing completion, it was realized that galvanized scaffolding was used during the erection of a large furnace. There was some concern about the possibility of zinc liquid metal embrittlement (LME) of the austenitic stainless-steel tubes. LME is the loss of ductility when a metal is in contact with liquid metal while under stress. Specifically, austenitic stainless steels are known to be susceptible to LME in the presence of liquid zinc which was implicated in the Flixborough Disaster where 28 people were killed in an industrial accident in 1974.

Product Number: 51323-18999-SG
Author: Adrian Valenzuela, Adalberto Toledo, Robert Leggat, Lake Barrett, James Kretzler
Publication Date: 2023
$0.00
$20.00
$20.00

Construction of a Plant was nearing completion when it was discovered that galvanized carbon steel scaffolding had been used during the installation of the refractory in the cracking furnaces. Zinc transferred by contact from the scaffold onto the furnace tubes was identified during the construction phase.
This was concerning because contamination of the superalloy furnace radiant catalyst tubes with residual zinc could potentially lead to liquid metal embrittlement (LME) when the tubes are heated to the furnace operating temperature. An analytical method (Dithizone reagent [CAS 60-10-6] used as a complexant in a colorimetric method) typically used in laboratories was scaled to an industrial construction environment to inspect for the presence of zinc. The robustness of the method was first tested in the laboratory and demonstrated in field trials. A handheld X-Ray Fluorescence device was used in conjunction with the colorimetric method to identify the presence of zinc and confirm its removal. This paper describes the scaling process used and the logistical challenges associated with inspecting extensive lengths of tubing for potential contamination.

Construction of a Plant was nearing completion when it was discovered that galvanized carbon steel scaffolding had been used during the installation of the refractory in the cracking furnaces. Zinc transferred by contact from the scaffold onto the furnace tubes was identified during the construction phase.
This was concerning because contamination of the superalloy furnace radiant catalyst tubes with residual zinc could potentially lead to liquid metal embrittlement (LME) when the tubes are heated to the furnace operating temperature. An analytical method (Dithizone reagent [CAS 60-10-6] used as a complexant in a colorimetric method) typically used in laboratories was scaled to an industrial construction environment to inspect for the presence of zinc. The robustness of the method was first tested in the laboratory and demonstrated in field trials. A handheld X-Ray Fluorescence device was used in conjunction with the colorimetric method to identify the presence of zinc and confirm its removal. This paper describes the scaling process used and the logistical challenges associated with inspecting extensive lengths of tubing for potential contamination.

Also Purchased
Picture for Liquid Metal Embrittlement Testing of Various Alloys for Oil and Gas Production
Available for download

51313-02519-Liquid Metal Embrittlement Testing of Various Alloys for Oil and Gas Production

Product Number: 51313-02519-SG
ISBN: 02519 2013 CP
Author: Stefanie Asher
Publication Date: 2013
$20.00
Picture for 11298 Mercury Embrittlement Crack Initiation in 5083 Aluminum Alloys – the Role of the Oxide Fillm
Available for download

11298 Mercury Embrittlement Crack Initiation in 5083 Aluminum Alloys – the Role of the Oxide Fillm

Product Number: 51300-11298-SG
ISBN: 2011 11298 CP
Author: Richard E Clegg
Publication Date: 2011
$20.00