Search
Filters
Close

51318-10962-Volatile Corrosion Inhibitor for Prevention of Black Powder in Sales Gas Pipelines

Black powder is a generic term used to describe entrained corrosion products that can accumulate in sales gas pipelines. This study was to evaluate the efficiency of model inhibitor compounds.

Product Number: 51318-10962-SG
Author: Z. Belarbi / B. George, N. / Moradighadi, D. / Young, S. / Nesic, M. Singer / R. P. Nogueira
Publication Date: 2018
$0.00
$20.00
$20.00

Black powder is a generic term used to describe entrained corrosion products that can accumulate in sales gas pipelines, potentially damaging process equipment. Black powder mitigation is a challenge in the gas industry. Many factors govern the formation of black powder, including gas composition (particularly CO2, H2S, and O2 impurities), condensation rate, relative humidity, and the existence of hygroscopic salts on the steel surface. The use of volatile corrosion inhibitors (VCIs) could constitute an economic and effective black powder mitigation method. However, little is known about the applicability of VCIs in sales gas environments. Therefore, it is important to study the effect of the key operating parameters on the efficiency of VCIs. The main goal of this study was to evaluate the efficiency of model inhibitor compounds with different functional groups (amine, thiol) and commercial inhibitors as candidates for black powder mitigation. The inhibition efficiencies of these VCIs were determined in dewing and hygroscopic conditions in both sweet (CO2) and sour (CO2/H2S) environments. Weight loss methods were employed to evaluate each VCI. Steel specimens were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and high resolution optical profilometry. Based on the results of laboratory tests, it is found that volatile corrosion inhibitors can be used to prevent corrosion in a sales gas system with carbon dioxide and hydrogen sulfide. The tested amine (morpholine) seemed to affect the pH of the condensed water but did not have “filming” properties. The obtained data show that VCIs reduced the mass of corrosion product and, therefore, the amount of black powder that potentially could be formed in CO2/H2S environments. Based on the measured corrosion rates and surface analysis of specimens, commercial inhibitor CI1 was shown to be most effective in inhibiting formation of black powder.

Keywords: Black powder, volatile corrosion inhibitor, carbon steel, sales gas.

Black powder is a generic term used to describe entrained corrosion products that can accumulate in sales gas pipelines, potentially damaging process equipment. Black powder mitigation is a challenge in the gas industry. Many factors govern the formation of black powder, including gas composition (particularly CO2, H2S, and O2 impurities), condensation rate, relative humidity, and the existence of hygroscopic salts on the steel surface. The use of volatile corrosion inhibitors (VCIs) could constitute an economic and effective black powder mitigation method. However, little is known about the applicability of VCIs in sales gas environments. Therefore, it is important to study the effect of the key operating parameters on the efficiency of VCIs. The main goal of this study was to evaluate the efficiency of model inhibitor compounds with different functional groups (amine, thiol) and commercial inhibitors as candidates for black powder mitigation. The inhibition efficiencies of these VCIs were determined in dewing and hygroscopic conditions in both sweet (CO2) and sour (CO2/H2S) environments. Weight loss methods were employed to evaluate each VCI. Steel specimens were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and high resolution optical profilometry. Based on the results of laboratory tests, it is found that volatile corrosion inhibitors can be used to prevent corrosion in a sales gas system with carbon dioxide and hydrogen sulfide. The tested amine (morpholine) seemed to affect the pH of the condensed water but did not have “filming” properties. The obtained data show that VCIs reduced the mass of corrosion product and, therefore, the amount of black powder that potentially could be formed in CO2/H2S environments. Based on the measured corrosion rates and surface analysis of specimens, commercial inhibitor CI1 was shown to be most effective in inhibiting formation of black powder.

Keywords: Black powder, volatile corrosion inhibitor, carbon steel, sales gas.

Also Purchased
Picture for 11089 Black Powder Movement in Gas Pipelines
Available for download

11089 Black Powder Movement in Gas Pipelines

Product Number: 51300-11089-SG
ISBN: 11089 2011 CP
Author: John S. Smart
Publication Date: 2011
$20.00
Picture for 11088 Analyses of Black Powder in Natural Gas Pipeline
Available for download

11088 Analyses of Black Powder in Natural Gas Pipeline

Product Number: 51300-11088-SG
ISBN: 11088 2011 CP
Author: Junya Yamada, Katsuyoshi Nakayama and Hidenori Kaneta
Publication Date: 2011
$20.00