Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!

Ultrasonic Guided Waves and Machine Learning for Corrosion Monitoring in Steel Pipes

In a pipe, guided Lamb-like waves can propagate around the circumference of the pipe wall. As they do, the waves pick up details about the pipe wall’s characteristics, such as its inner surface condition and, most significantly, its thickness. A robust pipe wall thickness estimation method based on conventional (i.e., non-machine learning) processing methods has been proposed by the authors.

Product Number: 51323-19289-SG
Author: Magnus Wangensteen, Tonni Franke Johansen, Ali Fatemi, Erlend Magnus Viggen
Publication Date: 2023
$0.00
$20.00
$20.00

In a pipe, a circumferentially travelling ultrasonic wave will gather information about the properties and boundaries of the propagation medium. However, the compounded effects of diagnostic features like mean pipe wall thinning, surface roughness, regional depressions, and pit developments are difficult to separate using traditional methods. Therefore, this study proposes an approach using artificial neural networks to estimate the diagnostic features of interest.


This study is based on ultrasound simulations and synthetic data. The synthetic data is recorded at a set of transducer positions at the outer pipe wall. The resulting traces are then combined into 2D images where each vertical line represents the waveform recorded at a specific transducer location. The resulting images are used to train a neural network to extract relevant features.


Diagnostic features for mean and minimum thickness, as well as standard deviation of the wall thickness, are quite accurately estimated. The neural network-based estimation for mean thickness is more accurate than a conventional reference method. This is observed especially for non-uniform wall thickness, which is typically the case if the pipe wall has been exposed to erosion and corrosion. Features for depth and location of depressions are also informative but less accurate. Data decimation experiments have also been conducted, even down to one single remaining trace. Also in this case, the neural network is able to make good estimates of some features, especially the mean wall thickness.

In a pipe, a circumferentially travelling ultrasonic wave will gather information about the properties and boundaries of the propagation medium. However, the compounded effects of diagnostic features like mean pipe wall thinning, surface roughness, regional depressions, and pit developments are difficult to separate using traditional methods. Therefore, this study proposes an approach using artificial neural networks to estimate the diagnostic features of interest.


This study is based on ultrasound simulations and synthetic data. The synthetic data is recorded at a set of transducer positions at the outer pipe wall. The resulting traces are then combined into 2D images where each vertical line represents the waveform recorded at a specific transducer location. The resulting images are used to train a neural network to extract relevant features.


Diagnostic features for mean and minimum thickness, as well as standard deviation of the wall thickness, are quite accurately estimated. The neural network-based estimation for mean thickness is more accurate than a conventional reference method. This is observed especially for non-uniform wall thickness, which is typically the case if the pipe wall has been exposed to erosion and corrosion. Features for depth and location of depressions are also informative but less accurate. Data decimation experiments have also been conducted, even down to one single remaining trace. Also in this case, the neural network is able to make good estimates of some features, especially the mean wall thickness.

Also Purchased
Picture for 05284 Evaluation of Inhibitors for their
Available for download
Picture for 04432 Electrochemical Noise Study on the Corrosion
Available for download

04432 Electrochemical Noise Study on the Corrosion of X52 Pipeline Steel in Aqueous Solutions Containing H2S

Product Number: 51300-04432-SG
ISBN: 04432 2004 CP
Author: Ricardo Galvan-Martinez, Juan Mendoza-Flores, and Ruben Duran-Romero, Instituto Mexicano del Petrole
$20.00
Picture for 01288 Application of Electrochemical Noise
Available for download

01288 Application of Electrochemical Noise Monitoring to Inhibitor Evaluation and Optimization in the Field: Results from the Kaybob South Sour Gas Field

Product Number: 51300-01288-SG
ISBN: 01288 2001 CP
Author: Emily E. Barr, Alan H. Greenfield, and Leonard Pierrard
$20.00