Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
In a pipe, guided Lamb-like waves can propagate around the circumference of the pipe wall. As they do, the waves pick up details about the pipe wall’s characteristics, such as its inner surface condition and, most significantly, its thickness. A robust pipe wall thickness estimation method based on conventional (i.e., non-machine learning) processing methods has been proposed by the authors.
In a pipe, a circumferentially travelling ultrasonic wave will gather information about the properties and boundaries of the propagation medium. However, the compounded effects of diagnostic features like mean pipe wall thinning, surface roughness, regional depressions, and pit developments are difficult to separate using traditional methods. Therefore, this study proposes an approach using artificial neural networks to estimate the diagnostic features of interest.
This study is based on ultrasound simulations and synthetic data. The synthetic data is recorded at a set of transducer positions at the outer pipe wall. The resulting traces are then combined into 2D images where each vertical line represents the waveform recorded at a specific transducer location. The resulting images are used to train a neural network to extract relevant features.
Diagnostic features for mean and minimum thickness, as well as standard deviation of the wall thickness, are quite accurately estimated. The neural network-based estimation for mean thickness is more accurate than a conventional reference method. This is observed especially for non-uniform wall thickness, which is typically the case if the pipe wall has been exposed to erosion and corrosion. Features for depth and location of depressions are also informative but less accurate. Data decimation experiments have also been conducted, even down to one single remaining trace. Also in this case, the neural network is able to make good estimates of some features, especially the mean wall thickness.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.