Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The first case of top of line corrosion (TLC) in Tunu gas field was reported by Gunaltun et al in 19991. Inlineinspection (ILI) of two carbon steel pipelines distributing multiphase effluent, showed up to 50% metalloss at 11.00 – 01.00 o’clock at several sections. Visual examination of a cut section showed that the topof line was covered with iron carbonate layer with deep pits, and severe metal loss occurred on largesurfaces at these area.
First Top of Line Corrosion (TLC) case was reported in 1999 in Tunu field, and since then, there wereseveral other pipelines from the neighboring fields, installed from 2007 to 2015 that were experiencingTLC and was confirmed using in-line inspections (ILI). The TLC rates were found to be 0.5-1 mm/year inaverage with the maximum rate of 2-3 mm/yr for gas containing CO2 up to 8.5% and around 80-90 bargoperating pressure with 80-90°C inlet temperature. Interestingly, on several pipelines, the maximumcorrosion rates happened at about 2-5 kilometers downstream the inlet risers. As part of mitigation, someof the pipelines were designed with 10 mm corrosion allowance and when required, spray pigging andrecently, volatile corrosion inhibitor, are employed during operation at some of the pipelines. Thanks toproper mitigations, despite high TLC rates, no adverse consequences were experienced on the pipelines.This paper will discuss on the correlation on the field data and inspection results of the pipelines,compares the predicted TLC rate with reality, and discusses the efficiency of various mitigation methods.Lesson learned are also provided to illustrate the evolution of TLC mitigation strategies to ensure theintegrity of the pipelines.
The hydrocarbon exploration in the ocean and deep sea was started as early as early as the 1850s, when the first drilling was carried out in California, USA. Other early oil explorations activities were later recorded in Pakistan (1886), Peru (1869), India (1890) and Dutch East Indies (1893). The development of an offshore industry is directly related to the development of subsea pipelines as well. As the industry expands towards deeper waters, the pipelines are required to have better materials, designs, operation practices and maintenance strategies to withstand the challenging environments. These pipelines are exposed to elevated temperatures, high pressures, and corrosive fluids.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Top of Line Corrosion (TLC) occurs in a multiphase flow when water vapor condenses at the top and the sides of the pipeline leading to a severe corrosion attack. This study investigated the probabilistic risk of TLC for wet sour gas subsea pipeline using flow modeling and corrosion predications. The flow assurance hydraulic study showed that most of water drops out over the first few kilometers as the gas is cooled and becomes much less through the rest of the offshore part until they reach onshore area where the gas temperature drops further due to Joule-Thomson effect. It was anticipated that corrosion activities will be higher at the high condensation locations. The corrosion prediction modeling revealed high corrosion severity driven by Top of Line Corrosion (TLC). In order to maintain the system integrity the internal coating supplemented by V-jet batch inhibitor injection has been selected to protect against TLC. This study has realized the challenge to apply the batch treatment as it requires process interruption to meet scraper speed limitations. Therefore the industry path forward should consider the development of novel TLC treatments that to be applied with no impact on operations.
TOL corrosion is reported to occur in large diameter wet gas pipeline in stratified flow conditionsdue to low fluid velocities1. With increasing distance from the inlet, the wet gas pipeline becomescooler as it loses heat to the environment. Such cooling causes water, hydrocarbon, and otherhigh vapor pressure species to condense on the pipe wall. The upper part of the pipe willconstantly be supplied with freshly condensed water while the less corrosive water saturatedwith corrosion products will be drained along the pipe wall to the bottom of the line.