Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The majority of insulation coatings used today are used to provide personnel protection to workers in the oil and gas or chemicals industry. These coatings provide a reduction in surface temperature to help prevent burn injuries from accidental contact with a hot surface. Human burn hazard is defined in ASTM C1055-03 and this standard is used in conjunction with ASTM C1057-17 as a method of determining skin contact temperature from a heated surface.
The majority of insulation coatings used today are used to provide personnel protection to workers inthe oil and gas or chemicals industry. These coatings provide a reduction in surface temperature tohelp prevent burn injuries from accidental contact with a hot surface. Human burn hazard is defined inASTM C1055-03 and this standard is used in conjunction with ASTM C1057-17 as a method ofdetermining skin contact temperature from a heated surface.
In many cases, operators measure surface temperature to determine if the surface is safe to touch. Inthis paper, we will examine the historical evaluation of “safe touch” and define what “safe touch” reallymeans as it is a time-dependent function.
We will describe the theory behind “safe touch” and explain the properties that are important inachieving the desired result. We will show a simulation model and how the various thermal propertiesare important to the overall “safe touch” properties of the coating. We will also look at how the actualmeasurement compares to the theoretical model and explain the key thermal properties that make agood coating for personnel protection.
Third Generation Polysiloxane (TGPS) ambient curing CUI mitigation coatings have been used in the petrochemical industry for over five years since the “third generation” concept was introduced at NACE Corrosion 2017. These coating technologies have demonstrated positive results in both shop and field application for asset management in elevated temperature, cryogenic and cyclic applications across -196 to 650o C/ -321 to 1200o F operational temperatures. TGPS coatings have also demonstrated effective use of a two-step (primer-insulation) CUI mitigation coating approach operating up to 400o C/750o F, when compared to the traditional (CUI coating-fibrous insulation-cladding) systems.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper will detail the performance differences between 1st generation and the next generation of ‘Multi Polymeric Inorganic Copolymer ‘and the proven benefits observed by the end user in the field but will also look at the alternatives to traditional insulation in the fight against corrosion under insulation (CUI).