Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Bimetal composite pipes composed of carbon steel and corrosion resistant alloys have attracted increasing attention for the applications in the fields of transferring pipes, downhole tubes, reservoirs and heat exchangers. It shows superior properties such as corrosion resistance of the corrosion resistant alloys and formability, and mechanical properties of carbon steels, which satisfy the requirements of both anti-corrosion and mechanical properties applied in oil and gas filed with an affordable price.
A series of manufacturing methods for the fabrication of bimetal composite pipes, including mechanical bonding method, welded pipe using the clad plate and inner surfacing welding clad pipe, have been applied in recent years.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Simulation and modeling of corrosion processes is an area of research that has seen significant growthin recent decades, with technological advancements drastically reducing the time required to solve theequations that underpin real-world physics. Predicting the behavior of a system computationally, whendone accurately, provides great benefit complementing experimental testing to further explain what ishappening within the corrosion process. There have therefore been multiple predictive models producedover the years to achieve this aim. Within the realm of carbon dioxide (CO2) corrosion, Kahyarian et al.
The majority of insulation coatings used today are used to provide personnel protection to workers in the oil and gas or chemicals industry. These coatings provide a reduction in surface temperature to help prevent burn injuries from accidental contact with a hot surface. Human burn hazard is defined in ASTM C1055-03 and this standard is used in conjunction with ASTM C1057-17 as a method of determining skin contact temperature from a heated surface.