Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
This paper will briefly discuss the U.S. nuclear buried pipe integrity program, the infrastructure created for information sharing, and the data mining results related to the threat of external corrosion from more than 4,500 inspections on buried pipe at more than 60 power generation sites.
In 2007 the U.S. nuclear power industry began experiencing buried and underground piping leaks. Nuclear power plants can have between 10 and 50 miles (16-80 km) of buried piping per generating unit. This piping is made from a variety of materials (e.g. carbon steels cast irons stainless steel and other alloy materials) some of which was installed with or without coatings and some of which operates with or without cathodic protection (CP). Many of the pipes can contain tritium in the fluids which is a radioactive isotope of hydrogen created during the nuclear fission process. The industry was quick to respond to this emerging issue and elected to leverage the recent integrity management experiences from the pipeline industry. The resulting processes were 100% adopted by U.S. nuclear operators for implementation with 5 years. As part of this effort a standard database was developed and provided to all operators as well as a process to follow for implementation. Compliance reporting metrics were established as part of this process and all operators committed to share information about the inspections performed. These metrics were designed to evaluate technology and program effectiveness on a semi-annual basis for aggregation and information dissemination as many had not performed these types of inspections before and they all needed information on technology applicability performance and effectiveness. Furthermore data analytics were used to provide further insight into several degradation mechanisms. The data mining effort was intended to provide threat prioritization guidance into the selection of excavation sites. This paper will briefly discuss the U.S. nuclear buried pipe integrity program the infrastructure created for information sharing and the data mining results from more than 4500 inspections on buried pipe at more than 60 sites.
Key words: Pipeline integrity management, nuclear power plant, buried piping, data analytics, data mining, NDE, external corrosion, risk prioritization.
The design of corrosion tests and computer corrosion rate simulations that do not incorporate the concepts of non-ideal chemistry can introduce very significant errors to the results.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper outlines the essential features required in a software package that has sufficient capability to accurately predict and mitigate AC induction effects upon pipelines for a majority of rights-of-way.
The use and benefits of the EN instrumentation, in combination with process chemistry analyses, were employed to monitor operating conditions in a full-scale Coke Oven Gas (COG) desulfurization process in which the corrosion rate changed with time.