Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In Oil Sands In-Situ operation bitumen is often extracted from underground oil sands deposits through SAGD (Steam Assisted Gravity Drainage) technology. This method involves forcing steam into sub-surface oil sands deposits, usually those at depth greater than 150m (492 ft), to heat the bitumen locked in the sand, allowing it to flow well enough to be extracted [1]. This process technology makes it possible to access the underground deposits otherwise difficult to access through the open mine method. It is particularly relevant in Canada because it is the most common method of in situ extraction used in the oil sands.
In Oil Sands SAGD (Steam Assisted Gravity Drainage) operation steam is injected into underground oil sands deposits to heat the bitumen locked in the sand and allow it to flow well enough to be extracted. Depending on the design of the SAGD facility, the steam distribution system can include hundreds of meters or kilometers longof piping/pipeline conveying steam from the plant to the pads. The reliability and integrity of this steam distribution system is critical for SAGD operation. This paper reports significant localized damage found at the high pressure steam distribution system in a SAGD facility. The morphology, distribution and features of the damage and the associated process conditions are summarized. Potential damage mechanisms and contributing factors are analyzed. A damage mechanism similar to conventional FAC (Flow Accelerated Corrosion) but under unique process conditions, i.e. un-conventional FAC with high temperature, high pH, low water quality, and reducingconditions, is deemed to be the most likely corrosion mechanism causing the damage. Further investigation is required to confirm and obtain a better understanding of this damage mechanism.
Cooling water systems are commonly used to cool a process, either steam, gas or liquid, through heat exchangers or condensers in various plants. The heat exchangers or condensers can be corroded easily or have scale and biofilm growth due to the poor water treatment program. The corrosion, scale, and biofilm growth on heat exchangers can lead to significant reduction in heat exchanger efficiency and lifetime. The repair expense or loss of production often costs plants a few hundred thousand or millions of dollars per day for heavy industries, such as chemical and power plants, refineries, and steel mills. Thus, cooling water treatment is critical to maintain the integrity and efficiency of heat exchangers.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This study describes an effort to find a method to control bacteria in 130 remote freshwater fiber glass storge tanks with an effective low-cost, convenient treatment method. Freshwater, in this application, is being used to control halite scale formed in the production from unconventional oil wells in the Williston, North Dakota, USA area. The water is sourced from local freshwater rivers and trucked to location and stored in 400 barrel (bbl) freshwater tanks. The water stored in the tanks is injected continuously, and the tanks are refilled on a variable schedule.
When two long-time operators of natural gas storage wells in southwestern Ontario merged, it was an opportune time for the combined company to evaluate the effectiveness and impact of cathodic protection (CP). Staff from both legacy operators expressed general satisfaction with the longevity of their storage wells, typically 30+ years, but they had relied on two different approaches to corrosion control: one had isolated wells from flowlines and operated without CP, while the second had resistively bonded wells to cathodically protected flowlines. For the second operator, typical well currents were in the range of ~3 A.