Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Canada's oil sands are the third largest deposit of crude oil in the world, and consist of a mixture of sand, water, and bitumen. Due to an aggressive operating environment that includes abrasive sands and corrosive chemicals, oil sands equipment and process piping often experience severe wear and erosion-corrosion, which can lead to the risk of equipment failures, plant downtime or, even worse, environmental leaks [1]. For more than half a century, oil sands producers have collaborated with materials suppliers, equipment fabricators, and technology providers to develop wear technologies to reduce downtime and improve operational reliability.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Oil sands operations may give rise to various corrosion risks such as pitting corrosion crevice corrosion microbiologically induced corrosion and abrasion-corrosion. This paper focuses on the abrasion-corrosion resistance of various stainless steels and wear resistant carbon steels.
The current paper presents a study on corrosivity of produced water and make-up water on UNS G10180 carbon steel in simulated in-situ thermal operations.
Oil sands production has unique challenges in terms of materials selection and long-term performance. This paper provides a general overview of various oil sands recovery and upgrading processes, and outlines areas where polymers and composites could be effectively utilized. Case studies.
This paper summarizes the experimental findings, discusses the effects of a typical bitumen-water slurry solution on the wear performance of polyurethanes and neoprenes and proposes a mathematical relationship between Coriolis (low stress, low angle abrasion & scouring) wear to the relevant physical properties in the virgin state of polyurethanes and neoprenes.
This paper discusses the implementation of an on-line remote ultrasonic (UT) system at a SAGD (Steam Assisted Gravity Drainage) facility located within the Athabasca oil sands reserves in Northern Alberta.
Two case histories at a thermal in-situ oil sands project elaborate on field parameters by studying the various corrosion phenomena at play. Mitigation recommendations are also be presented.
The objective of this study is to develop predictive wear model for dense slurry flow to narrow the gap left by extrapolation from models meant for more dilute sand conditions.
Assessment was performed on the use of polymer-based materials or liners for large solids particle slurry applications. The study was conducted in a pilot-scale horizontal slurry flow loop using two different solids: sand and rocks.
Corrosion susceptibility of commonly used oil sands slurry pipeline materials was evaluated with and without bitumen coating on their surface.
A study on the corrosivity of field produced water obtained from in-situ oil sands operators to UNS G10180 carbon steel. Rotating cylinder electrode (RCE) and rotating cage autoclave (RCA) systems were used as test methods. The susceptibility of the carbon steel to pitting was also evaluated.
Slurry pipeline systems are used for the extraction of bitumen from mined ore in the oil sands industry in Alberta, Canada. Most of these extraction processes are open to atmosphere resulting in significant air ingress and entrainment within the slurry pipelines used to transport mined ore and tailings. In addition, for short hydrotransport slurry pipelines, the slurry is conditioned by air to create bubbles coated with a bitumen film called “air-sacks”.