Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Risks of stray current corrosion in pipelines with isolation joints have been investigated. Both subsea pipelines with cathodic protection with sacrificial anodes and onshore above ground installation without cathodic protection are examined.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A research methodology has been employed to quantify the dynamic effects of anodic transients on CP and corrosion by means of an electrochemically integrated multi-electrode array, often referred to as the wire beam electrode (WBE).
As using underground infrastructures, such as heat transport facilities continues for a long time, damage cases due to corrosion continue to occur. Therefore, it is essential to understand the corrosion behavior of underground metal facilities in terms of safety and economy. Many studies have been conducted on the corrosion of pipeline steels in soil.
Cases illustrating the capability of the multi-electrode array in detecting the initiation and propagation of localized corrosion and coating failure: (i) Monitoring localized corrosion…(ii) Visualizing passivity, its breakdown…(iii) Imagining coating disbondment under overprotection.
The purpose of this document is to present information on rail transit stray current as it concerns transit and utility engineers.
HISTORICAL DOCUMENT. This NACE International standard practice establishes the general principles to be adopted to minimize the effects of stray current corrosion caused by direct current (DC) and/or alternating current (AC) from external sources on steel reinforced concrete (RC) and prestressed concrete (PC) structures or structural elements. The standard practice offers guidance for the design of concrete structures that may be subject to stray-current corrosion; the detection of stray current interference; the selection of protection measures; and the selection of mitigation methods.
This standard practice describes appropriate prevention and mitigation measures that can be applied to RC and PC structures that are, or can be, exposed to stray-currents from external sources in order to minimize or eliminate stray-current corrosion. This standard practice addresses only steel corrosion related issues, and does not deal with issues of safety and hazards to people or structures associated with DC and AC voltages; these are covered in national standards and regulations, such as EN 50443 and EN 50122-1.
Recommended practice: Procedures for the control of external corrosion on underground conduit systems and direct buried lead-covered cables.
Historical Document 1994
Watermain failures are not often recognized as corrosion but are usually referred to merely as “watermain breaks” because watermain pipe appears sound prior to failure. Some of the causes of watermain breaks are poor design, improper installation, surge or water hammer, soil movement, manufacturing defects, impact, internal corrosion, and external corrosion. Figure 1 shows some of the possible causes of the DI pipe.