Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Risks of stray current corrosion in pipelines with isolation joints have been investigated. Both subsea pipelines with cathodic protection with sacrificial anodes and onshore above ground installation without cathodic protection are examined.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Pipeline integrity management and practices have been systemized through standards(1), and one important aspect in integrity management is corrosion monitoring. Corrosion monitoring by using permanently installed equipment has increased in the past years(2). By using permanently installed ultrasound transducer (UT) sensors and automating signal processing and communication, a more costefficient corrosion management program can be obtained. Ultrasound techniques have been developed to complement traditional inspection with monitoring to improve cost efficiency of pipeline integrity management.
In the 1990’s, the National Science Foundation realized that the United States needed to combine science, technology, engineering, and mathematics into a single effort. So, they created the acronym “STEM” to describe the application of those combined disciplines in both education and in the workplace, in order to help solve the country’s most difficult technological problems. Several population segments have been targeted for STEM learning and application.
Cementitious repair mortars are commonly used to rehabilitate deteriorated wastewater concrete infrastructure prior to the application of high-performance lining systems. Commonly such repair mortars receive a broom finish creating a “profiled” surface prior to the application of a spray applied protective lining system. Other recommendations require that that the cementitious mortars receive a blasted (mechanically profiled) surface to impart a mechanical profile prior to top coating with a similar lining system. In the following paper the authors summarize the results of an investigation to quantitatively assess adhesion of a protective lining when applied to a broom finish surface verses a blasted surface.
Coal tar enamel provides an extremely long service life, under the right conditions. The Bureau of Reclamation (Reclamation) has observed more than 80 years of corrosion protection at facilities such as Hoover Dam. The coal tar enamel linings in penstocks and outlet works that are buried, encased, or in tunnels maintain excellent condition with minor damage. However, when temperature fluctuates between hot and cold, the enamel is stressed and develops alligator cracking.
The subject wells are part of a project by San Francisco Public Utilities Commission (SFPUC) todevelop a groundwater supply in the South Westside Basin of San Francisco for use duringdrought conditions for Daly City, San Bruno, and the South San Francisco District. The projectincludes construction of 13 groundwater wells with a total capacity of 7.2 million gallons per day(mgd). During routine maintenance inspection of two of the wells in Daly City, severe corrosionwas observed on the pump columns and on the stainless steel pump shaft.
Foul-release coating systems were examined by electrochemical impedance spectroscopy (EIS) to measure the degradation of coating dielectric properties in immersion. Three-inch by six-inch coated steel coupons were placed in dilute Harrison’s solution (DHS) to simulate constant immersion field conditions.
Metal and its structures corrosion is a natural process. The process started and accelerated in the presence of electrolytes [1, 2]. Thus, it's highly encouraged to stop this electrolyte passage. One of the ways to resist the passage of electrolytes is by making a barrier. The most popular method of such a barrier is an organic coating which mainly comes from polymer resin along with pigments, and additives. Different organic coatings are being used to make a barrier that can ultimately protect the metals and their structures. Epoxy, polyurethane (PU), and acrylate coatings are widely being used for this purpose.
The use of single component water based coatings for protection of metal substrates continues to grow due to their low odor, health and safety advantages, easy cleanup and environmental friendliness. Nevertheless, the challenge continues to find alternatives to the traditional chromate, zinc or similar heavy metal type corrosion inhibitors which tend to rely on passivation or sacrificial cathodic protection.
Anti-corrosion coating systems typically rely on viscous two-component systems with high VOC content. Autocatalytic, moisture-cure polyurethanes (MC PU) offer a unique approach to develop one-component coatings, which are easier to apply compared to 2k systems and usually can be formulated with lower VOC content.
Internal coatings stress (ICS) develops in coatings applied to a rigid substrates. During drying, volume changes due to solvent loss and/or cure induces stresses in the films. Differences in the thermal expansion coefficients of the coating and substrate also affect the ICS. ICS affects the interfacial adhesion and results in delamination once the stress exceeds the force of adhesion.