Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Pipeline integrity management and practices have been systemized through standards(1), and one important aspect in integrity management is corrosion monitoring. Corrosion monitoring by using permanently installed equipment has increased in the past years(2). By using permanently installed ultrasound transducer (UT) sensors and automating signal processing and communication, a more costefficient corrosion management program can be obtained. Ultrasound techniques have been developed to complement traditional inspection with monitoring to improve cost efficiency of pipeline integrity management.
A real-time and online corrosion monitoring system that provides reliable wall thickness data is presented. The system has monitored a weld for four years on a wet gas pipeline, and the operator has used this data as part of their risk-based integrity management strategy. The monitoring system is based on the well-established ultrasound pulse-echo technique. As the sensors are installed directly on the pipe outer wall, and measure wall thickness as a function of time, it provides high resolution data on material wall loss and corrosion rate. The system is modular in terms of number of sensors, and the ultrasound sensors can be installed in a ring on straight pipe, on top of the weld, or any matrix that the operator finds necessary to obtain sufficient information about the corrosion mechanisms.
There are several ways to validate the performance of a cathodic protection (CP) system for buried pipelines. Over the years, pipeline networks and their corrosion challenges have become increasingly complicated, not least due to the many sources of both AC and DC interference that affects CP operation. Also, the various measurement techniques that can be applied to test CP effectiveness has increased over the years. Finally, the sheer number of buried pipeline miles has been constantly increasing.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Shown on Figure 1 is a typical impressed current CP diagram. When the rectifier is first turned on, i.e. time t=0, there is no polarization yet. At that moment, the applied DC voltage is fully consumed by IR drops at anode (IRa0) and cathode (IRc0), plus original potential difference between anode and pipe (Eoca- Eocc). When t=0, the current is at the greatest value. Over time when polarization kicks in, due to adding polarization resistance, the current is gradually reduced.
Scale and corrosion inhibitors are commonly used in many oil and gas production systems to prevent inorganic deposition and to protect asset integrity. Scale inhibitor products are based on organic compounds with phosphate or carboxylic functional groups such as amino phosphonates, phosphate esters, phosphino polymers, polycarboxylate and polysulfonates,1 as shown in Figure 1. These anionic groups have strong affinity to alkaline earth cations and can adsorb on the active growth sites of scale crystal (Figure 2), resulting in stopping or delaying the scale formation process.