Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Results here of an effort to identify a potentiodynamic means of inducing corrosion in laser-etched areas of stainless steel tools. The electrochemical technique should be able to distinguish between “good” and “bad” etches relatively quickly so that it may be used to help refine the laser etch process, and ultimately assist in quality assurance.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion behavior of austenitic stainless steel UNS S30400 (SS304) and austenitic stainless steel UNS S31603 (SS316L) was investigated to confirm, for the same chemicals and metallurgies, that electrochemical impedance spectroscopy (EIS) could be used as a tool to investigate the compatibility of neat chemical with stainless steels.
The efforts to lower automotive component weight to make cars more fuel efficient has increased the demand for aluminum alloys. In these applications, substantial amounts of heat are generated due to engine combustion, making it necessary to cool the engine systems. Metals in an engine application will rely on coolant to transfer heat. Corrosion behavior is another consideration for metals. Aluminum alloys, similar to the metals they are replacing, are sensitive to corrosion, especially in an aqueous alkaline environment.
In order to meet growing energy demand, oil and gas industries are facing many challenges, including the exploitation of increasingly deep fields with high pressure and high temperature in sour environments containing CO2 and H2S. Operators must carefully select materials that are resistant to these aggressive environments. The main risk associated with the use of martensitic stainless steels is the risk of sulfide stress cracking under well shut-in conditions. The aim of this study is to evaluate the performance of supermartensitic stainless steels (13Cr-5Ni- 2Mo) based on NACE TM-0177-2016 method A and alternative methods such as slow strain rate test according to TM-0198-2016 and ripple strain rate test. Cyclic potentiodynamic polarization measurements were also performed to evaluate pitting and repassivation performance. The interest of this study is to present reliable and fast criteria to predict sulfide stress cracking performance of supermartensitic stainless steels through alternative methods. The effect of buffer and chloride content on pitting resistance and sulfide stress corrosion cracking resistance will also be discussed as well as the effect of Mo and Cr on pitting resistance.
This study focuses on a better understanding of pitting and crevice corrosion on coating surface damaged carbon steels in automotive applications. Immersion and cyclic polarization tests were conducted on bare and coated metals in a 5% NaCl solution.