Save 20% on select best sellers with code MONSTER24 - Shop The Sale Now
In seawater, higher strength nickel-copper alloys are used as alternatives to copper alloys. These can be susceptible to chloride stress corrosion cracking and hydrogen embrittlement in conditions where cathodic protection is utilized. Copper-Nickel-Tin alloys (CuNiSn) show low corrosion rates in the free and coupled conditions. Resistance to hydrogen embrittlement is demonstrated.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Performance of formulations of antifouling coatings to protect carbon steel from effects of microbiologically influenced corrosion (MIC) and marine biofouling in a tropical harbor seawater was assessed by field and laboratory experiments. • Scanning electron microscopy (SEM). • Energy dispersive spectroscopy (EDS). • X-ray diffraction (XRD). • Seawater immersion.
Cooling towers provide an ideal environment for the growth of Legionella pneumophila. We report here the results of a literature review on the biocidal activity of the oxidizing biocide bromochlorodimethylhydantoin (BCDMH) against L. pneumophila.
Chloromethyl-methylisothiazolone (CMIT/MIT) biocide is used for microbial control in industrial water treatment applications. It is effective versus various types of bacteria, algae and fungi. This paper will provide results of planktonic and biofilm efficacy studies with CMIT/MIT biocide versus various strains of Desulfovibrio.
Comparison of 16s ribosomal DNA sequence can show evolutionary relatedness among microorganisms. In this study, 16s rDNA was employed to maximize the population identification of 40 cooling tower samples. This shows that a wide variety of biocides are needed to address microbial populations.
This paper reflects on Francis L. LaQue 's pioneering approach that allowed testing in real-world marine environments and generation of comprehensive, practical data over nearly seven decades. These data are still widely referenced and used in materials selection for marine environments.
Biofouling accumulation on a ship’s hull has a direct impact on fuel consumption and associated greenhouse gas (GHG) emissions and may pose a biosecurity risk due to the presence of non-indigenous, potentially invasive aquatic species.
The antifouling system (AFS) is designed to protect the underwater surfaces from biofouling accumulation. Underwater inspections (UWI) of ships are typically carried out to monitor and verify the condition of the underwater hull and the AFS.
Recipients of UWI reports are reliant on the quality of information provided to make adequate decisions relating to hull performance, AFS condition and performance, biofouling management and associated risk assessments. Consistent and good quality reporting is key to effective underwater hull condition record-keeping and management.
This standard practice presents guidelines for preplanning for, recovering from, and repassivation after a low pH excursion in open recirculating water systems, no matter what the cause. The procedures presented in this standard inno way preclude the use of other procedures but are presented as best practices developed over years of experienceinavarietyofplants.Theprovisionsofthisstandardshouldbeappliedunderthedirectionofqualifiedwater-treatmentpersonnelfromwater-treatmentsuppliersand/orconsultants andplantpersonnel.
This paper describes the range of copper alloys in marine service today and the evolution of applications which include ships' cannon and hull sheathing in 18th and 19th century and condenser and seawater piping requirements which spurred concentrated investigations in the 20th century.
The incidence and proliferation of microbial population in oil and gas production facilities can have undesirable consequences on upstream, midstream and downstream production systems. Microbes thrive in the anaerobic conditions encountered in these systems and are supported by nutrients and metabolites found in produced water. Although the majority of process and water injection systems are susceptible to microbial fouling, the development of microbial activity is exacerbated by specific conditions such as stagnant fluids or the presence of deposits.1 Threats of microbiologically influenced corrosion (MIC) and other challenges associated with microorganisms have become valid as more cases are reported. While MIC, biofouling (BF), and reservoir souring are three of the most common problems associated with microbes, many other production issues can be attributable to microbial activity including: employee infections, filter plugging, loss of injectivity, and metal sulfide deposits.2
Technologies used to control classes of microorganisms found in cooling systems and methods for monitoring and control. Of interest to owners, engineers, contractors, and operators.
Seawater biofouling is a major threat in heat exchanger operations. It decreases the heat transfer efficiency and service life of heat exchangers1,2. The formation of deposits caused by biofouling on the heat exchanger metal surfaces increases surface roughness and decreases cross-sectional flow area, which leads to higher friction loss in fluid flow3,4. Mitigation methods, including surface scrubbing, fluidizing bed heat exchangers, cleaning-in-place and dosing anti-fouling chemicals, are the main ways to tackle biofouling5. Conventional approaches to treat biofouled components by periodic electrochlorination or acid flushes are costly and environmentally hazardous. Huge costs are associated with heat exchanger biofouling losses, but there is still a lack of research to develop heat-conducting antifouling coatings to heat exchangers3.