Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Recently Crack Growth Rate and Threshold Stress Intentisity Factor analyses of data from Slow Strain Rate tests have been used for Stress COrrosion Cracking evaluation. This methodology has been discussed in detail based on different analytical techniques and the results from laboratory tests have also been presented.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Crack growth rate (CGR) behavior of UNS N07718 was investigated as a function of K-rate in two different environments under cathodic potentials, a mild environment containing 3.5wt% NaCl and a more aggressive environment containing 0.5M H2SO4.
Primary water stress corrosion cracking (PWSCC) testing of Alloy 182 and 152 welds was conducted using 1/2 compact tension specimens at 325 ℃ in simulated primary water environments of a pressurized water reactor.
The hydrogen economy envisions the use of gaseous hydrogen (herein referred to as hydrogen) as an energy carrier for the reduction of carbon emissions. Transportation of hydrogen from the upstream source (generation location) to the end-user will be necessary to maximize the carbon reduction potential switching from natural gas to pure hydrogen or hydrogen blended natural gas products. A proposed, economically viable option is to utilize the existing and extensive natural gas pipeline infrastructure in the United States.
Co-based alloy (30Cr-4W-Bal.Co), such as Stellite TM grade 6 (UNS No. ERCOCr-A) valve seat, is used extensively in applications where superior resistance to wear corrosion are required. But there are only rare data about crack growth behavior of the alloy in the high temperature water. It is difficult to extract specimen from as welded Stellite-6, because of the valve sheet did not have enough volume. So, to evaluate the crack growth behavior and its temperature dependence, crack growth rate measurements were performed using forged Co-based alloy bar (Stellite TM grade 6B) (UNS No. R30016) in a simulated PWR primary water at temperature ranging from 250 to 320°C using half-inch size compact tension specimens (1/2TCT).
Most of the core internal components of light water reactors (LWRs) are made of austenitic stainless steels (SSs). Exposed to fast neutron irradiation, reactor core internal components are vulnerable to irradiation-induced or irradiation-enhanced degradations. At LWR-relevant temperatures and irradiation doses, significant microstructural and microchemical changes can take place in SSs, leading to deteriorated mechanical and corrosion properties.
As the current reactor fleet continues to age, with many reactors wanting to extend operational licenses beyond their initial 40 lifetime, it is becoming increasingly important to understand how structural materials in these reactor environments will degrade over time. A critical material degradation mode which can limit the lifetime of reactor components is irradiation assisted stress corrosion cracking (IASCC). As the name implies, a material must be subjected to both a corrosive environment as well as mechanical stresses while the original material microstructure has been affected by irradiation.
Irradiation assisted stress corrosion cracking (IASCC) is a phenomenon caused by neutron irradiation of austenitic stainless steels (SSs). The crack growth rates (CGRs) of IASCC for boiling water reactor (BWR) components are needed for assessments to ensure component integrity. The CGR formula has been proposed as a function of the stress intensity factor (K).
A database of SCC growth rates in commercial austenitic stainless steels exposed to pressurized water reactor (PWR) primary water environments was developed and analyzed from international data in high temperature water, with an emphasis on deaerated or hydrogenated water while also including water containing oxygen. Crack growth rate (CGR) disposition equations were derived to reflect the effects of stress intensity factor (K), temperature, Vickers hardness (HV, to represent retained deformation), with enhancement factors for oxygen-containing, high corrosion potential conditions. The tolerance to chloride and sulfate impurities in PWR primary water was also evaluated.
The Hanford Nuclear Reservation contains radioactive and chemically hazardous wastes arising mostly from weapons production, beginning with World War II and continuing through the Cold War. The wastes are stored in 177 carbon steel underground storage tanks, of which 149 are single-shell tanks (SSTs) and the remaining are double-shell tanks (DSTs). The U.S. Department of Energy, Office of River Protection is responsible for retrieving the tank wastes, treating them in order to encapsulate them in glass logs, and then permanently closing the tanks and associated facilities.
Stress corrosion cracking (SCC) initiation and growth rate testing was performed using Alloy A-286, a high-strength iron-base alloy, to evaluate for possible differences in response in boric acid solutions containing KOH vs. LiOH. PWRs are considering a switch from LiOH to KOH because of the uncertain future availability and high cost of Li. To achieve the same pH at temperature (pHT) in typical PWR primary water, the same molar concentration of Li and K is needed. The atomic weight of K is 39.1, which is 5.63 higher than the atomic weight of Li at 6.94, so 1 ppm Li yields the same pHT as 5.63 ppm K. The conductivity differs somewhat because of difference in the mobility of Li+ and K+.