Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper provides an overview of the existing literature with regards to the understanding of cracking in molybdenum-containing 13Cr alloys and provides suggested paths of investigation.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
In order to meet growing energy demand, oil and gas industries are facing many challenges, including the exploitation of increasingly deep fields with high pressure and high temperature in sour environments containing CO2 and H2S. Operators must carefully select materials that are resistant to these aggressive environments. The main risk associated with the use of martensitic stainless steels is the risk of sulfide stress cracking under well shut-in conditions. The aim of this study is to evaluate the performance of supermartensitic stainless steels (13Cr-5Ni- 2Mo) based on NACE TM-0177-2016 method A and alternative methods such as slow strain rate test according to TM-0198-2016 and ripple strain rate test. Cyclic potentiodynamic polarization measurements were also performed to evaluate pitting and repassivation performance. The interest of this study is to present reliable and fast criteria to predict sulfide stress cracking performance of supermartensitic stainless steels through alternative methods. The effect of buffer and chloride content on pitting resistance and sulfide stress corrosion cracking resistance will also be discussed as well as the effect of Mo and Cr on pitting resistance.