Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Initial investigations described at Corrosion 2011. This paper reports on development of a micelle detection instrument. Criteria for interpreting the presence of micelles will be reported and results of a simulated field study to investigate the link between inhibitor micelle presence and corrosion rate. Together with results from real field samples, this data will be presented as development of a new tool for field analysis of brines
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper describes a method of exploiting the critical micelle concentration (CMC) of the corrosion inhibitors to show that the use of CMC can be used as a laboratory screening method for corrosion inhibitor selection.
On-site personnel can now be trained to gather and test samples. Development of this on-site testing kit is described and a case study presented on its use in the field. Feedback provided from on-site personnel, and further development of the method are discussed.
Rotating cylinder electrode (RCE) methodology with electrochemical impedance spectroscopy (EIS) measurement was applied to study the inhibition behavior of quaternary ammonium compounds on CO2 corrosion of X65 carbon steel.
Corrosion inhibitors provide a critical barrier to internal corrosion, presenting the most cost-effective form of mitigation and enabling operators to use carbon steel where it would otherwise be impractical. The correct selection and validation of inhibitors is essential to ensure successful field deployment, providing safe and reliable operation. However, the selection and optimization of a corrosion inhibitor for a particular field application is not trivial.
In the first paper, a mixture design matrix of a homologous series of alkyldimethylbenzylammonium chlorides (BAC) was used to assess the performance and facilitate optimization of a mixed surfactant corrosion inhibitor system based on surface coverage and steady state inhibited corrosion rate.1 In this second paper, the approach is extended to include adsorption kinetic analysis, as demonstrated in Woollam and Betancourt for a first-order Langmuir kinetic model.2