Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
In the first paper, a mixture design matrix of a homologous series of alkyldimethylbenzylammonium chlorides (BAC) was used to assess the performance and facilitate optimization of a mixed surfactant corrosion inhibitor system based on surface coverage and steady state inhibited corrosion rate.1 In this second paper, the approach is extended to include adsorption kinetic analysis, as demonstrated in Woollam and Betancourt for a first-order Langmuir kinetic model.2
In Part 1 of this two part paper, the critical micelle concentration (CMC) and corrosion inhibitor efficiency response curve was estimated for mixtures relating to the homologous series of alkyldimethylbenzylammonium chlorides with C12, C14 and C16 tail lengths. In the first paper, the uninhibited and inhibited corrosion rates were used to estimate corrosion inhibitor efficiency and were used to determine the optimum mixture ratio of the three surfactants based on their ability to minimize the steady state inhibited corrosion rate. In this second part, the transient data between the uninhibited and inhibited steady state corrosion rate were used to estimate the rate of change of surface coverage. This transient response in coverage was then analyzed using a mixed first and second order adsorption kinetic model, which enabled quantification of the adsorption and desorption rate constants. The adsorption rate constants were determined for the same 10-point three-component simplex mixture experimental design introduced in Part 1. Cubic response curves were calculated for the adsorption and desorption rate constants, and adsorption equilibrium constant. The adsorption rate constant and desorption rate constants were found to have very different interaction strengths, with the adsorption rate constant showing a stronger pairwise interaction, whilst the desorption rate constant displayed a stronger ternary interaction. The differences between the interaction strengths between pairwise and ternary interactions is reflected in the composite equilibrium constant.
Corrosion inhibitors provide a critical barrier to internal corrosion, presenting the most cost-effective form of mitigation and enabling operators to use carbon steel where it would otherwise be impractical. The correct selection and validation of inhibitors is essential to ensure successful field deployment, providing safe and reliable operation. However, the selection and optimization of a corrosion inhibitor for a particular field application is not trivial.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Corrosion of pipelines made of carbon steel and exposed to wet hydrocarbons containing CO2 and H2S is a common but serious problem encountered in petroleum industry and its occurrence causes enormousexpense due to production downtime, accidental injuries, and replacement costs. Control and prevent corrosion using chemical treatment (e.g. corrosion inhibitor injection) is one of the most cost-effective solutions and commonly practiced methods to prevent corrosion failures in pipelines in oil and gas industry. Generally speaking, the active corrosion inhibitor (CI) components in commercial CI packages are usually organic, nitrogen-based surfactants such as amines, imidazoline and its derivatives. Due to the amphiphilic nature of surfactants, a good fraction of the injected CI will inevitably go into the oil phase through partitioning and to the oil/water interface.
Carbon steel (CS) material is widely used for the equipment in oil and gas production industry due to its mechanical properties associated with a relatively low cost, compared to other materials. Depending on the corrosiveness of the fluid that is vehiculated, the use of carbon steel is generally associated with the injection of a corrosion inhibitor (CI) in order to mitigate internal corrosion. Corrosion inhibitors are generally used in continuous injection at an injection rate that is depending on the corrosiveness of the fluid. Based on the operational feedback, the internal standards are recommending for multiphase pipelines CI injection rates in the range of 50 - 70 ppm for temperature below 80°C of and of 150 to 200ppm for temperatures above 100°C. These injection dosages are typical values that are considered in the laboratory tests for the qualification of the CI and they are adjusted on-site based on the monitoring results.