Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
Qualified U.S. Navy nonskid coatings are two-component (2K) epoxy-based systems that contain various sizes of aggregate. Once mixed, these highly viscous coatings are applied using a napless roller to generate a “peak and valley” profile that provides skid/slip-resistance when cured. The roll-application process is slow and inconsistent, and appearance is often determined by experience of the applicator.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Details of a new protocol for evaluating the effectiveness of coatings to reduce corrosion of steel structures is presented in this paper. Basic concepts of accelerated testing specified in American Society for Testing Materials (ASTM) standards and recent research investigations were used to develop a procedure that can provide conclusive results within 2400 hours of exposure as compared to more than 5000 hours in current practices.
This paper details a novel surface preparation process that is suitable for Duplex coating of galvanized steel intended for a variety of atmospheric and embedded service applications. It provides all the properties necessary for excellent coating performance and longevity, including high adhesion, excellent resistance to cathodic disbondment, and resistance to ingress of water, without the drawbacks associated with abrasive blasting, the traditional surface preparation method.
Pipeline integrity management and practices have been systemized through standards(1), and one important aspect in integrity management is corrosion monitoring. Corrosion monitoring by using permanently installed equipment has increased in the past years(2). By using permanently installed ultrasound transducer (UT) sensors and automating signal processing and communication, a more costefficient corrosion management program can be obtained. Ultrasound techniques have been developed to complement traditional inspection with monitoring to improve cost efficiency of pipeline integrity management.
This paper proposes to identify the differences in chemistry between the two types of OAA and the potential shortfalls in the use of each type under practical working conditions. It will also highlight the proven benefits of these additives in service.
This paper examines the restoration of the Robert F. Kennedy (Triborough) Bridges - lead removal and painting approaches for the three bridges which compose one of the largest and most controversial structures in NYC. The techniques employed reflect typical approaches as well as some unique operations associated with the rehabilitation of major bridge structures.
Coatings have been used as a primary method to protect the substrate underneath from corrosion in various geographical environments. A diverse range of generic coating types are available to protect the metals in different corrosive environments. Selection of the right coating for a specific metallic substrate at given operating conditions and environment is key to avoiding any premature failures of coating.
Now more than ever, epoxy coatings on concrete will only prove successful if diligent care is given to the details of concrete preparation. Preparation is more than grinding or facing of an existing surface and should ideally begin in the developmental stages of the structure.
The County of Madison, MS. experienced severe degradation of a major pump station in their system that was less than 10 years old. They contracted with Waggoner Engineering of Jackson, MS. to design a rehabilitation system as well as increase the structural integrity with the addition of some support walls. The project created scheduling issues due to the addition of new concrete structures to the pump station. The use of innovative coatings technologies that offered the ability to apply corrosion resistant linings over green concrete structures, dramatically enhanced the project schedule and reduced overall costs.
Ambient conditions can be critical to the success or failure of a coatings project. It has generally been assumed by the industry that a sling psychrometer is more accurate in determining Relative Humidity and Dew Point than electronic sensors.
As environmentally friendly coatings, inks, and adhesive systems have evolved; additives have also evolved in chemistry, structure and effectiveness. This overview strives to present these new additive technologies in three areas: surfactants, dispersants, and defoamers. The chemical nature of these additives and subsequent performance in a variety of systems will be described.
The Fukushima Daiichi Accident in 2011, which was the result of the Great East Japan Earthquake, tsunami, and prolonged station blackout, increased the focus on developing accident tolerant fuel cladding (ATFC), especially on the use of protective coatings. Coatings have been widely used in a variety of industries, including automotive, aerospace, and nuclear to improve corrosion resistance, enhance hardness and physical properties, and reduce wear. In an accident scenario, a coating may aid in reducing the oxidation kinetics and hydrogen evolution rates. The present study investigates the benefits that physical vapour deposited nitride-based coatings may have for ATFC.