Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
The coatings landscape is changing dramatically with more stringent VOC laws and extractables standards for drinking water, the products owners can rely on for lining their storage vessels is shifting. The author will discuss the advantages of using high film build, edge retentive 100% solids epoxy technology for steel potable water storage tanks.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
The Paint and Coatings industry uses accelerated testing to extrapolate performance in real world situations and ensure coating formulations will withstand the forces of nature and provide long-term durability. This paper will compare the performance data of the three most common accelerated exposure test methods: QUV-A (ASTM D 4587), Xenon Arc (ASTM D 6695), and EMMAQUA (ASTM D 4141) and correlate this data to the same systems exposed for 10 years in South Florida and in North Kansas City, Missouri.
A variety of systems can characterize the properties of final painted surfaces in production to optimize appearance. In order to properly control and improve the coating process, rapid, large-area 3D measurement capability is needed that can work at all stages, from initial raw substrates to the final clear coat. Recent research has identified the key spatial wavelengths of interest and worked to correlate various calculations of surface texture with subjective appearance of the coated surfaces.
Asset owners spend significant monies each year on the construction of new and the maintenance of existing infrastructure. More than ever, these funds can be difficult to procure and budget. The owners include, both municipal and industrial entities and funds are limited in most cases, therefore, asset service life is very important to all parties.
This new standard is the result of a six-year effort by NACE, EFC and ISO/TC 67/WG 7. Background to the development of the new standard and a summary outlining its impact on materials selection for those familiar with previous documents.
Since 1982, there has been a move to Thermal Sprayed Aluminum (TSA) coating in the “splash zone” of offshore structures. Our experience indicates that an experience applicator, good surface preparation and quality of wire combined to achieve required thickness and apply the sealer to seal the entire surface.
A review of cathodic disbondment test (CDT) methods from standard organizations such as ASTM, ISO, CSA, NF and AS is presented in this paper.
In this paper the approach of an Oil Company is demonstrated from the initial choice between different primers: inorganic zinc and organic (epoxy) zinc., to all the preliminary pre-qualification tests, the subsequently field test performed, and the procedures adopted, costs included.
The primary application for coatings made with Fluoroethylene vinyl ether (FEVE) resins has been in architectural markets. This paper will discuss the chemistry and physical characteristics of FEVE resins, including data on weatherability. A brief review of FEVE resin product types will be given. Both laboratory and offshore corrosion test results will be addressed.
The research described in this paper was carried out with the objective of establishing any correlation between coating performance and the results of cathodic disbondment testing. Experiments were carried out using 13 coatings. Nine samples of each coating were studied in a total of 117 experiments.
This paper will discuss the differences in "shielding" and "nonshielding" coating systems for pipelines and how CP works with these coatings.
In the mid-1990s, the US Navy’s technical community, led by Naval Sea Systems Command (NAVSEA), recognized existing coatings used to protect the inside of ships’ tanks were failing on average 5-8 years after application. The high cost to blast and recoat over 11,000 tanks every 5-8 years, not counting submarines and aircraft carriers, was prohibitive. To address this issue, the Navy conducted a study to analyze the problem and decided to replace these legacy coatings with high solid epoxy coatings.1