Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Several offshore field failures in recent years have been attributed to Hydrogen Induced Stress Cracking (HISC) of high strength, highly corrosion resistant Precipitation Hardened Nickel Alloys (PHNA’s) such as UNS N07716, UNS N07718 and UNS N07725.
Hence, HISC is a constant concern regarding subsea components subjected to high tensile stress, and the industry is searching for solutions to their technical needs: High strength corrosion resistant alloys (CRA’s) resistant to seawater (high Pitting Resistance Equivalent number (PREN)) but also resistant to HISC.
For PHNA’s, improved processing (chemical composition limits and processing temperatures) and improved quality control methods as well as refined acceptance criteria are all under consideration.
For development of further high-strength low-alloy steel OCTG for sour service, effects of carbon content on the strength, microstructure, and sulfide stress cracking (SSC) resistance of low-alloy steel were fundamentally investigated.
Canada’s existing natural gas pipeline network is being considered to help store and distribute high pressure hydrogen, when blended with natural gas, to support transition to the hydrogen economy. The importance of this topic to Canada is well document in the Federal Government’s call to action “Hydrogen Strategy for Canada”, which includes benefits such as: (i) positioning Canada to become a worlding-leading supplier of hydrogen technologies, (ii) employing hydrogen as a key enabler to reach net-zero emissions by 2050, and (iii) generating more than 350,000 high paying jobs, including unique opportunities for indigenous communities and businesses.