Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper describes a bridge coating operation and maintenance manual that was developed for the City of Vancouver which operates and maintains an inventory of 33 bridges with coated steel elements.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This study investigates corrosion of carbon steel balls and the valve seat during acid cleaning in inhibited HCL_1_ solution.
Thermal Diffusion Galvanizing (TDG) coating was investigated with and without various recommended topcoats for both short and long-term exposure. The samples were exposed in outdoor test condition for up to 45 months.
The long-term performance of three different automotive surface coatings (physical barrier, sacrificial, and hybrid) was predicted using electrochemical impedance spectroscopy (EIS). Corrosive conditions faced by vehicles in the field, such as deicing, can be simulated using accelerated methods. The coating/metallic substrate interface experiences various degradation mechanisms during exposure to harsh conditions. In this work, real-time measurements were performed via EIS testing to characterize the degradation and corrosion mechanism of coating and substrate. After the real-time measurements, a mathematical framework based on mechanistic and machine-learning concepts was developed. Phase angle plots from EIS were utilized to monitor the state of the coating during steady-state conditions and train the Artificial Neural Network (ANN) as an arrangement of Time Series Prediction (TSP). The transport processes, activation, and interface interaction with the corrosive environments were analyzed as a corrosion mechanism and were predicted via the ANN model. The ANN has predicted the coating performance for several years, and the experimental results have been validated by employing scanning electron microscopy (SEM) imaging. Each coating condition has been validated via SEM imaging at the initial state and when the coating protection is activated.
In the recent years, Horizontal Directional Drilling - HDD - became a real improvement for pipeline construction when crossing obstacles such as rivers, roads or railways. For the corrosion protection of the carbon steel pipeline, a protective coating is associated with cathodic protection. But for trenchless techniques, the coating shall withstand the stresses from the installation. Several standards are used to specify corrosion protection coatings for buried pipelines but those documents do not cover the specific conditions of an HDD.
During the rebuilding after hurricane Katrina hit the Gulf Coast in 2005, construction inspectors in coastal areas began noticing that the galvanized connectors being used were already rusting before the framing was complete. These were the same connectors, such as hurricane straps, joist hangers, beam hangers, and hurricane ties, which are easily seen beneath the elevated houses along the shoreline. Even on the construction projects that specified stainless steel connectors, inspectors could see tarnishing before the framing was complete.
The Brazilian cost of corrosion was estimated at 3% of the GPD in 2018, that percentage is equivalent to approximately $US 49 billion, according to an ABRACO(1) journal released in 2020.1 It is estimated that from this cost $US 19 billion could have been saved through anticorrosive actions. In another research conducted by the EPRI(2) the results showed that at least 22% of corrosion costs could be avoided through adequate mitigating actions.2
The Brazilian cost of corrosion was estimated at 3% of the GPD in 2018, that percentage is equivalent to approximately $US 49 billion, according to an ABRACO1 journal released in 20201. It is estimated that from this cost $US 19 billion could have been saved through anticorrosive actions. In another research conducted by the EPRI2 the results showed that at least 22% of corrosion costs could be avoided through adequate mitigating actions2.
Within the Wastewater Treatment process the growth of soft fouling materials (algae) create problems such as Total Suspended Solids issues, false BOD readings, clogged pumps, and reduced flow rates through the weirs of clarifiers. Furthermore, dead or dying algae can cause additional odor concerns. This phenomenon has cost municipalities and taxpayer’s untold amounts of money due to the required maintenance dollars spent to correct this problem.
This report provides the most current technology and industry practices for the internal in-situ cleaning and coating application in an existing steel pipeline. This report presents general practices and preferences in regard to the cleaning, surface preparation, drying, and the application of a coating in a steel pipeline by the pig (scraper) batching method. It is applicable to onshore or offshore steel pipelines in all industries including the oil and gas gathering, distribution, and transmission industries. It is also applicable to welded steel water and brine handling pipelines.
This AMPP technical report describes the current state of protecting the interiors of tank cars transporting crude oil. This report is intended for and will benefit all stakeholders involved in the protection of tank cars transporting crude oil, including large fleet tank car owners, crude oil coating suppliers, tank car coating applicators, and crude oil shippers. The current state of protecting the interiors of tank cars transporting crude oil was developed by conducting surveys of various stakeholders. This report summarizes the survey results.
Atmospheric corrosion monitoring has traditionally been a lengthy and costly discipline. Visual inspection and weight loss testing is commonly applied, and this requires years of testing and on-site inspections with regular intervals. Furthermore, inspections and surveys in marine environments are troublesome, expensive and sometimes dangerous.