Save 20% on select titles with code HIDDEN24 - Shop The Sale Now
This paper will identify and document how these different factors affect the susceptibility of austenitic stainless steel to Chloride-Stress Corrosion cracking based on a review of currently available literature. A review of current industry best practices and a review of how the Oxygen content, the pH and application of stress relief affects Chloride-Stress Corrosion Cracking will be documented and presented.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Protective coatings provide the primary defense against corrosion of pipelines. Adhesion is one of the most crucial properties for coatings to function properly and support successful long-term integrity. If the bond between the coating and substrate is weak or deteriorates, the coating ceases to be attached to the substrate, and the coating loses its effectiveness and eventually fails.
This AMPP standard test method provides a comprehensive methodology to evaluate the relative performance of insulation materials in accelerated and simulated field conditions on bare metal substrates. This test method is intended for use by corrosion control personnel, design engineers, project managers, purchasing personnel, and construction engineers and managers. It is applicable to insulated piping and equipment in industrial applications such as oil and gas gathering, distribution, transmission and refining, power generation, mining, and chemical industries.
Understanding and mitigating stress corrosion cracking (SCC) in stainless steels used in light water reactors is important, and experimental efforts to characterize this behavior have been performed over the last several decades. While SCC growth has been shown to follow an Arrhenius temperature functionality, a departure from this functionality has been observed due to high temperature SCC growth rate retardation (HTR). This paper characterizes observed trends between different cold work levels and temperature effects on cracking behavior and crack tip morphologies in 304 stainless steel.
Steel rebar in concrete is in a passive state due to the high pH of concrete. The hydroxyl (OH-) ions in highly alkaline concrete pore solution act as inhibitors and promote passive film stability, while chloride ions lead to passive film breakdown. Leckie and Uhlig1 first explained the counter effect of inhibitor action with chloride concentration. They proposed a competition between the inhibitor and chloride anions for adsorption on the passive surface.
Corrosion Resistant Alloys (CRAs) have been widely used in oil & gas process systems since the 1980s due to their excellent resistance towards uniform corrosion in aggressive environments such as seawater and produced water containing CO2, organic acids and/or production chemicals. However, cases of localized corrosion in the form of pitting and crevice corrosion have regularly been observed. As an example, ISO(2) 21457 limits the max. operating temperature to 200C for 25 Cr super duplex stainless steel (UNS S32750/760) and 6-Mo austenittic stainless steels (UNS S31254) in chlorinated seawater systems, to avoid crevice corrosion.1
Structural steel, which is a critical component of many infrastructures, can suffer from deterioration of steel by reaction with air and its pollutants known as atmospheric corrosion when exposed to theenvironment. The risks associated with corrosion of newly-built and ageing infrastructure are high and their consequences costly. The recent International Measures of Prevention, Application, andEconomics of Corrosion Technologies (IMPACT) study led by NACE International (now renamed asAMPP) has shown for Canada the estimated annual corrosion cost to be $51.9 billion, which is 2.9% of Canada’s GDP.
Medium voltage (MV) cables, which typically operate in the range of 2 kV to 35 kV, are commonly used in nuclear power plants (NPPs) throughout the world. These cables support the safety and wellbeing of NPPs by providing supplementary power for safety systems to continue operating during emergency events such as natural disasters or human-induced outages. This allows for uninterrupted reactor operations for a short period of time until the primary safety systems can be brought back online. Given their critical importance to the operation of NPPs, MV cables are often installed in locations such as underground concrete ducts or electrical conduits that limit cable exposure to environmental stressors such as moisture and temperature. Despite the fact that these cables are not operating continuously given the overall rarity of NPP emergency events, they must still satisfy reliability and lifetime performance requirements of cables used in primary NPP operations.
This paper describes a novel methodology to measure the Critical Pitting Temperature (CPT) of a Duplex Stainless Steels (DSS) in artificial seawater based on the Electrochemical Noise (ECN) technique.
The recent development of ASTM D8370-22 provides a field-applicable technique for measuring impedance on protective coatings. The test method expands the use of electrochemical impedance spectroscopy (EIS) beyond the laboratory and standardizes the approach for various applications to polymeric coatings on conductive substrates, e.g., barrier coatings on steel structures. Example applications include condition assessments and quality control testing.