Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
HFW pipes is considered a cost-effective pipe option for oil and gas pipeline projects. The HFW seam performance is always a concern, especially in challenging environments such as low temperature applications and wet sour services. One of the challenges include the seam properties to resist sulfide stress cracking (SSC) or hydrogen embrittlement (HE) when exposed to hydrogen charging environment such as a wet sour service.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Super martensitic stainless steel (13Cr-5Ni-2Mo) provides high strength and CO2 resistance. It can be used at high temperature up to 180°C/356°F in high chloride environment. When the well temperature is above 180°C/356°F, Duplex grades 22-5-3 or Super Duplex 25-7-4 grades are commonly selected as per API 5CRA standard. A new proprietary grade chemistry has been developed to provide improved strength up to 125ksi and higher pitting resistance while maintaining a tempered martensitic microstructure with low delta ferrite content and no detrimental phases or precipitates. Improvement of pitting resistance has been assessed through cyclic polarization curves. Higher sulfide stress cracking (SSC) and stress corrosion cracking (SCC) were assessed through NACE(1) TM 0177 method A 1 at ambient and high temperature. X-ray Photoelectron Spectroscopy (XPS) characterizations provide deep knowledge about passive film compositions underlining the beneficial effect of higher Mo within the grade. This paper presents the benefit of the improved chemistry on sweet corrosion and sulfide stress cracking in severe downhole environment. It summarizes the effect of different parameters in both production and shut-in conditions to be considered to select cost effective material.
This is Part I of a two-part series intended to provide background and a rational justification or supporting rationale for requirements leading to the development and publication of NACE(1) MR 0175 and ISO(2) 15156. Part I focuses on some of the metallurgical and processing requirements; specifically, Rockwell C 22 scale (HRC) limit, the various acceptable heat treatments and the 1wt% Ni limit for carbon and low alloy steels to minimize the threat of sulfide stress cracking (SSC) in H2S containing environments. Part II describes the testing and rationale behind the use of accelerated laboratory test procedures and their development to differentiate metallurgical behavior in sour environments.
Carbon steels such as API 5L X65 are widely used oil and gas exploration, production and transportation service. However, these steels tend to corrode in the presence of wet CO2 and corrosion is more pronounced in the presence of dissolved salts and acids. Other metals, alloys and polymers also degrade in the presence of high pressure gaseous and supercritical CO2. The corrosion rate of carbon steels in some aqueous environments have been reported to be more than a few millimeters per year.9-10 The situation could be further exacerbated by H2S where cracking can be an issue for high strength steels.
Martensitic stainless steels for OCTG materials are widely used in sweet and mild sour conditions. Environmentally-assisted cracking (EAC) is a major corrosion-related issue when using stainless steels as OCTG materials. The EAC in specific oil/gas well conditions with sour environments is defined as sulfide stress cracking (SSC) and stress corrosion cracking (SCC). The SSC is a type of cracking caused by hydrogen embrittlement, which is attributed to a cathodic reaction under acidic conditions, while SCC is associated with an anodic reaction. SSC testing for martensitic stainless steels for OCTG material is often carried out at or near ambient temperature under conditions simulating condensed water, and SCC tests are conducted at higher temperatures under conditions simulating formation water and/or the brine availability test.
2205 Duplex Stainless Steel (DSS) UNS S31803 has been used in refinery hydroprocessing unit reactor effluent air coolers (REACs) since the mid 1980’s (1). 2205 was selected due to its good resistance to ammonium bisulfide (NH4HS) corrosion and perceived resistance to chloride stress corrosion cracking because it was an economical choice when compared to higher nickel alloy alternatives such as Alloy 825 or Alloy 625.
Many of these DSS REACs have remained in service successfully, with some in service for more than 30 years.