Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Corrosion Under Insulation (CUI) in pipingc systems consumes a significant percent of the maintenance budget in the petrochemical industry. Prevention of CUI by the use of (1) thermal spray aluminum, (2) stainless steel pipe, (3) expanded metal cages for personnel protection instead of insulation and (4) aluminum foil wrapping are discussed in terms of long term protection, installed cost and Life cycle cost.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A laboratory investigation of corrosion under insulation (CUI) using methods given in ASTM G189 for cyclic temperature, wet/dry conditions. Two long term exposure tests of three material conditions and two insulative materials (mineral wool and calcium silicate insulations).
Corrosion under Insulation (CUI) and External Corrosion continue to be a major issue for Petrochemical facilities. Refineries have been investing in a CUI and External Corrosion inspection program. This paper details the methodology for addressing this damage and lessons learned throughout the implementation.
Electrochemical and slow strain rate tests were done to demonstrate the protective ability of a thermal sprayed aluminum coating to prevent chloride stress corrosion cracking of TP304L SS in aqueous chloride solutions. Mitigation methods.
Investigation and comparison of effects of mineral wool and a water repellent insulation on CUI. Drain holes and their ability to reduce CUI was evaluated. The susceptibility to CUI of carbon steel was investigated at 80 °C using a newly developed test rig in a controlled environment (25 °C and 50 %RH).
Details of a second procedure developed by the testing centre INNCOA to assess the performance of several insulation systems with respect to the ingress of water vapour through a damaged section of the covering layer.
In industrial plants such as oil & gas and chemical plants, the plant piping is covered with insulative materials such as mineral wools and metal cladding for thermal insulation. The piping under insulation is subject to more severe corrosive environment than that exposed to the outdoor, due to rainwater entering through the cladding joints and condensation caused by temperature fluctuation. In addition, since the piping is covered with the insulation materials, it is impossible to identify the corrosion from the outside, increasing the risk of leakage accidents due to delays in corrosion mitigations.
Integrity management of corrosion under insulation (CUI) has historically and continues to be one of the biggest corrosion related challenges within the oil & gas, maritime, chemical and petrochemical industries.2 Corrosion of piping, associated flanges, pressure vessels and structural components from CUI is a commonly found phenomenon and if left undetected or not stringently managed can result in catastrophic leaks or explosions, equipment failure and periods of prolonged downtime due to repair or replacement. It is estimated around 40% to 60% of an operator’s pipeline maintenance budget is a result of CUI.3
Corrosion under insulation (CUI) is a critical challenge that affects the integrity of assets for which the oil and gas industry is not immune. Over the last few decades, both downstream and upstream industry segments have recognized the magnitude of CUI and challenges faced by the industry in its ability to handle CUI risk-based assessment, predictive detection and inspection of CUI. It is a concern that is hidden, invisible to inspectors and prompted mainly by moisture ingress between the insulation and the metallic pipe surface. The industry faces significant issues in the inspection of insulated assets, not only of pipes, but also tanks and vessels in terms of detection accuracy and precision. Currently, there is no reliable NDT detection tool that can predict the CUI spots in a safe and fast manner. In this study, a cyber physical-based approach is being presented to identify susceptible locations of CUI through a collection of infrared data overtime. The experimental results and data analysis demonstrates the feasibility of utilizing machine-learning techniques coupled with thermography to predict areas of concern. This is through a simplified clustering and classification model utilizing the Convolutional Neural Networks (CNN). This is a unique and innovative inspection technique in tackling complex challenges within the oil and gas industry, utilizing trending technologies such as big data analytics and artificial intelligence.
To properly protect workers from skin-contact burns in compliance with U.S. Occupational Safety and Health Administration (OSHA) guidelines, it is imperative that the coating provides the proper system barrier and prevents heat transmission that could cause irreversible tissue damage. For passive heated surfaces, ASTM C1055 (Standard Guide for Heated System Surface Conditions that Produce Contact Burn Injuries), (1) and ASTM C1057 (Standard Practice for Determination of Skin Contact Temperature from Heated Surfaces Using a Mathematical Model and Thermethesiometer) provide the standard procedure to test a coatings ability to prevent serious burn injuries and provides the skin temperature limits that human tissue endures before irreversible harm (Figure 1). There are two primary methods used to comply with these OSHA guidelines for workers who may come into contact with pipe and tank surfaces.
This AMPP standard test method provides a comprehensive methodology to evaluate the relative performance of coatings in accelerated and simulated field conditions under insulation. This test method is intended for use by corrosion control personnel, design engineers, project managers, purchasing personnel, and construction engineers and managers. It is applicable to insulated piping and equipment in the oil and gas gathering, distribution, transmission, refining, and chemical industries.
This AMPP standard test method provides a comprehensive methodology to evaluate the relative performance of insulation materials in accelerated and simulated field conditions on bare metal substrates. This test method is intended for use by corrosion control personnel, design engineers, project managers, purchasing personnel, and construction engineers and managers. It is applicable to insulated piping and equipment in industrial applications such as oil and gas gathering, distribution, transmission and refining, power generation, mining, and chemical industries.