Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The direct current electrical treatments are applied with the aim of improving corrosion resistance of steel embedded in concrete. It is the impressed current cathodic protection in both widely used modes – preventive or remedial, electrochemical chloride extraction, realkalization of carbonated concrete and electrochemical injection of protective agents. All the treatments are similar to each other in its principle and arrangement.
Direct electrical current (DC) is used in several ways for its healing effect in reinforced concrete structures. In long-term application, it is used for cathodic protection (CP), both in preventive and remedial mode. DC applied for a short time is used for electrochemical chloride extraction. In all cases, the DC current induces migration of chlorides from the cathodic reinforcement to the surface anode. The passage of current through wet concrete induces the transport not only of chloride but also of other ions such as hydroxides or calcium and sodium ions. This can cause local concentration changes, dissolution and changes in the microstructure of the cement binder and affect its sorption properties towards chlorides. Thus, concrete after chloride extraction may be less resistant to future chloride penetration. Series of concrete samples based on Portland cement (OPC) and samples containing supplementary materials (micromilled limestone, microsilica) were prepared, treated with DC current and tested for diffusion and migration resistance and microstructural changes afterward. The results showed significant impact of DC treatment on all the properties under study.
Tetrakis(hydroxymethyl)-phosphonium Sulfate (THPS) is a very common active ingredient in oil and gas biocides. While product labels provide broad guidelines application dosing the lowest effective dose of THPS is difficult to determine. Site water chemistry and bacteria biology variability will affect the dose need to achieve the desired level of bacteria population control. For these reasons biocide dose response studies are commonly conducted on solutions containing bacteria to determine the effect of treatments before application.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Spent nuclear fuel (SNF) is currently stored in stainless steel dry storage canisters (DSCs) contained within concrete cask systems with passive ambient air cooling. These systems are emplaced, either horizontally or vertically, at independent spent fuel storage installations (ISFSIs), located at utility reactor sites. The ambient air introduces moisture, aerosolized salt particles, and dust to the canister surfaces. The composition of the aerosols depends on geographical factors, such as proximity to the ocean,industrial area, rural areas, and transportation corridors that use road salt for winterization.
Biomass, as a renewable energy source, can be converted into bio-oil (BO) via thermochemical conversion pathways. Among them, fast pyrolysis is the most common and the only industrially applied approach to convert dry biomass into BO. There are many advantages of using BO to replace traditional fossil fuels. For example, the amount of CO2 generated from biofuel combustion is close to that absorbed in raw biomass growth, leading to a net-zero carbon emission from energy production. BO combustion generates lower emissions of SOx and NOx compared to conventional fossil fuels.