Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The susceptibility of Stress Corrosion Cracking (SCC) assisted by H2S according temperature and pH. In a second phase, links are highlighted between the differences of cracking resistance and localized corrosion morphologies.
Depending on environmental conditions UNSS32205 duplex stainless steel may suffer from Stress Corrosion Cracking (SCC) assisted by H2S initiated by local corrosion processes that involve the selective dissolution of the ferritic phase or the austenitic phase. The intent of this paper is first to study the evolution of the susceptibility of SCC assisted by H2S according temperature and pH. In a second phase, links are highlighted between the differences of cracking resistance and localized corrosion morphologies. Results show that the temperature of highest susceptibility to SCC assisted by H2S depends on the pH of the environment, moving from 80 °C at low pH (2.8 – 3.5) to temperature between 50 – 20 °C at higher pH (4.5 – 6.0). The maximum of cracking susceptibility seems to correlate with selective corrosion of ferrite coupled with transgranular cracks of the austenite.
Key words: UNS S32205, SSRT, stress corrosion cracking, pitting, H2S, temperature, pH
This paper explains the most common damage mechanisms of high temperature alloys in radiant section such as creep/carburization, thermal fatigue/carburization, and thermal shock.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper discusses two case histories in which 41XX low-alloy steel, quenched and tempered to 22 HRC maximum hardness, was used in longer-term downhole completion tools.
Details of a second procedure developed by the testing centre INNCOA to assess the performance of several insulation systems with respect to the ingress of water vapour through a damaged section of the covering layer.