Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Phenalkamine curing agents for epoxy resins provide an outstanding anticorrosion protection, fast and low temperature curing, high surface tolerance, large overcoat window and low VOC formulations.
This paper focuses on the Norwegian offshore sector and on the type of coating systems that are currently selected for new platforms. Where shall the coating be used, what coatings are chosen and why have they been chosen.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Over the past few decades, dramatic technology shifts have occurred in the coatings industry. Rapid changes in pigments, resins, and solvents have helped make environmentally friendly coatings possible; however, such changes have also created many technical hurdles.
Stress development in epoxy coatings applied in water ballast tanks (WBT) on ships can lead to cracking, corrosion, and failure of ship’s hulls, with catastrophic consequences to the environment as well as loss of seamen at sea. Typically, these cracks do not appear during application and curing of the coating but after some finite time of service. The financial wellbeing of the ship’s owner can suffer greatly. To avoid such cracking, it is critical to have a clear understanding of the underlying mechanisms and primary controlling factors behind the coating cracks.