Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.

During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.

Search
Filters
Close

51314-3776-Comparison between X5CrNiCuNb16 and X46Cr13 under Corrosion Fatigue

Product Number: 51314-3776-SG
ISBN: 3776 2014 CP
Author: Marcus Wolf
Publication Date: 2014
$0.00
$0.00
$0.00
In geothermal power plants materials e.g. pumps are exposed to extremely corrosive thermal water. This results in corrosion fatigue and so inevitably the reduction of the lifetime of these components. Also in the field of the carbon dioxide storage technology (carbon capture and storage CCS) components are exposed to a corrosive environment and mechanical stress. In order to gain knowledge upon the corrosion fatigue strength of materials a corrosion chamber for "in situ" conditions was designed and successfully applied.Two different steels X46Cr13 and X5CrNiCuNb16-4 have been tested and their corrosion fatigue behavior was compared. To simulate the frequency of operating pumps (30 – 40 Hz) a resonant testing machine was used. In addition technical CO2 was introduced into the closed system at a rate close to 9 L/h to keep stable environmental conditions. The samples have a surface roughness of Rz = 4 to simulate technical machined surfaces. The calculated tensile strength of X46Cr13 with soft annealed microstructure (coagulated cementite in ferrite-perlite matrix) is about 680 MPa and the yield strength is about 345 MPa. The tensile strength of X5CrNiCuNb16-4 is about 1078 MPa and the yield strength about 928 MPa. Testing parameters are: corrosion media: saline aquifer water (Stuttgart Aquifer) temperature of the brine at 60 °C and load ratio of R=-1. For X46Cr13 a stress amplitude between 160 MPa to 270 MPa and for X5CrNiCuNb16-4 a stress amplitude between 150 to 500 was chosen. Cycles until crack initiation differ strongly and were found to start at 5 x 104 up to 12.5 x 106 cycles.X46Cr13 has reached a maximum number of cycles (12.5 x 106) at a stress amplitude of 173 MPa. X5CrNiCuNb16-4 has reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa. The range of scatter for X5CrNiCuNb16-4 is very high (1:34) in comparison the range of scatter for X46Cr13 (1:3.5). 
In geothermal power plants materials e.g. pumps are exposed to extremely corrosive thermal water. This results in corrosion fatigue and so inevitably the reduction of the lifetime of these components. Also in the field of the carbon dioxide storage technology (carbon capture and storage CCS) components are exposed to a corrosive environment and mechanical stress. In order to gain knowledge upon the corrosion fatigue strength of materials a corrosion chamber for "in situ" conditions was designed and successfully applied.Two different steels X46Cr13 and X5CrNiCuNb16-4 have been tested and their corrosion fatigue behavior was compared. To simulate the frequency of operating pumps (30 – 40 Hz) a resonant testing machine was used. In addition technical CO2 was introduced into the closed system at a rate close to 9 L/h to keep stable environmental conditions. The samples have a surface roughness of Rz = 4 to simulate technical machined surfaces. The calculated tensile strength of X46Cr13 with soft annealed microstructure (coagulated cementite in ferrite-perlite matrix) is about 680 MPa and the yield strength is about 345 MPa. The tensile strength of X5CrNiCuNb16-4 is about 1078 MPa and the yield strength about 928 MPa. Testing parameters are: corrosion media: saline aquifer water (Stuttgart Aquifer) temperature of the brine at 60 °C and load ratio of R=-1. For X46Cr13 a stress amplitude between 160 MPa to 270 MPa and for X5CrNiCuNb16-4 a stress amplitude between 150 to 500 was chosen. Cycles until crack initiation differ strongly and were found to start at 5 x 104 up to 12.5 x 106 cycles.X46Cr13 has reached a maximum number of cycles (12.5 x 106) at a stress amplitude of 173 MPa. X5CrNiCuNb16-4 has reached the maximum number of cycles (10 x 106) at a stress amplitude of 150 MPa. The range of scatter for X5CrNiCuNb16-4 is very high (1:34) in comparison the range of scatter for X46Cr13 (1:3.5). 
Product tags
Also Purchased
Picture for Microbiologically Influenced Corrosion of Heat Exchanger Tubes
Available for download

51314-3795-Microbiologically Influenced Corrosion of Heat Exchanger Tubes

Product Number: 51314-3795-SG
ISBN: 3795 2014 CP
Author: Hussain Almahamedh
Publication Date: 2014
$0.00
Picture for Comparison of the Corrosion Resistance to Dangerous Goods of Austenitic Crnimo and Duplex Steels
Available for download

51314-3786-Comparison of the Corrosion Resistance to Dangerous Goods of Austenitic Crnimo and Duplex Steels

Product Number: 51314-3786-SG
ISBN: 3786 2014 CP
Author: Margit Weltschev
Publication Date: 2014
$0.00
Picture for A Study of the Corrosion Properties of Welds and Heat-Affected Zones of a Wrought Nickel Alloy
Available for download

51314-3771-A Study of the Corrosion Properties of Welds and Heat-Affected Zones of a Wrought Nickel Alloy

Product Number: 51314-3771-SG
ISBN: 3771 2014 CP
Author: Paul Crook
Publication Date: 2014
$0.00