Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
To evaluate the stress corrosion cracking initiation response of highly cold-worked UNS N06690, constant load tensile and blunt-notch compact tension testing were performed in 360°C simulated pressurized water reactor primary water.
Due to its superior resistance to corrosion and stress corrosion cracking (SCC) high Cr Ni-base Alloy 690 is now commonly used in pressurized water reactors (PWRs). Even though highly cold-worked (CW) Alloy 690 has been shown to be susceptible to SCC crack growth in PWR primary water environments an open question remains whether SCC initiation was possible for these materials under constant load test conditions. Testing has been performed on a series of CW alloy 690 CRDM tubing specimens at constant load for up to 15000 hours in 360°C simulated PWR primary water. A companion paper will discuss the overall testing approach and describe results on different alloy 690 heats and cold work levels. The focus of the current paper is to illustrate the use of focused ion beam (FIB) scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the high-resolution investigation of precursor damage and intergranular (IG) SCC crack nucleation in these specimens. Three-dimensional (3D) FIB/SEM imaging has been conducted on a series of IG precursors such as grain boundary (GB) oxides small cavities and even shallow cracks observed at the specimen surface. Contrast variations and EDS mapping were used to distinguish oxides carbides and cavities from the matrix material. Nanometer-sized cavities were observed associated with GB carbides in the highly CW specimens. Shallow IG cracks were present in the 30%CW specimens and exhibited oxidized crack flanks and a higher density of cavities ahead of the oxide front in all cases. The shape and distribution of carbides and cavities in the plain of the cracked GBs was analyzed in 3D to gain a mechanistic understanding of the processes that may be leading to SCC initiation in highly CW alloy 690.
Key words: 3D FIB/SEM, Ni-base alloys, SCC initiation, cold-work, UNS N6690, (Alloy 690)
Crack growth rate (CGR) behavior of UNS N07718 was investigated as a function of K-rate in two different environments under cathodic potentials, a mild environment containing 3.5wt% NaCl and a more aggressive environment containing 0.5M H2SO4.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
A quantitative assessment of remnant cold deformation and effectiveness of post deformation treatment (PDT) on sour resistance and mechanical properties of a C110 grade by reproducing uniform deformation with tensile/compressive tests followed by heating/soaking/cooling cycles representing induction PDT
The specimen surface, effect of filling rate were examined. Characterization of the primary fracture surface and the gauge section of the tested specimens was done by scanning electron microscopy and subsequent classification according to the NACE TM0198 standard.