Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Coatings for metal protection is a very broad area of research and no single formulation technique is used. Generally, coatings contain micropores, areas of low cross-link density or high pigment volume concentration that provides a diffusion path for corrosive species such as water, oxygen and chloride ions to the coating/metal interface. Therefore, incorporating corrosion inhibitors into a coating system is a basic step required for corrosion protection [1]. Direct addition of corrosion inhibitors has almost always resulted in undesirable leaching of inhibiting molecules and subsequent reactions with the coating matrix. This reduces the effect and duration required to protect the substrate in the aggressive environment. The encapsulation of corrosion inhibitors into a host material as using nanocontainers is an effective delivery system of the corrosion inhibitor in active corrosion protection application [2].
Protection and maintenance processes are very important in the various sectors utilizing metallic materials. Protection routes can either be passive or active depending on the components of the coating material. Active corrosion protection for metallic substrates is being widely explored with the use of smart release coatings delivering corrosion inhibitors to defective sites upon damage of protective coatings. The incorporation of modified additives into polymers such as epoxy resins offers robust solutions and aims at maximizing the materials’ compatibility for the fabrication of protective surfaces. The present investigation describes the contribution of neem phytochemicals as corrosion inhibitors loaded in biocompatible silica nanocontainers providing a protective primer to the corrosion process. The hybrid particles inside the organic matrix were pH-sensitive and the triggered release of encapsulated inhibitors was meant to provide a barrier in the coating defect from the aggressive corrosion-promoting environment. Crystallinity and morphology of the nanoparticles were characterized using XRD and TEM.
Corrosion of reinforcing steel is the most significant cause of deterioration of reinforced concrete structures. Exposure to de-icing salts, seawater and chloride-containing set accelerators can play a significant role in reinforcing steel corrosion. Long-term exposure to carbon dioxide is also cited as a contributor to the corrosion of steel in concrete as well.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
Impressed current rectifiers are the backbone of a pipeline operator’s cathodic protection (CP) systems. A rectifier’s ability to protect a large length of electrically continuous pipeline considerably improves efficiencies and reduces material costs as compared to galvanic systems. However, like galvanic anodes, impressed current anodes are a consumable asset, and require replacement at the end of their service life to ensure that the rectifier can continue to adequately protect the pipeline.
Galvanized protective coatings have been used for structural steel to mitigate steel corrosion in atmospheric exposures and chloride-rich marine environments. The galvanizing process involves dipping steel elements free of surface mill scale in a molten zinc bath where the diffusion of zinc into the steel matrix allows for zinc-iron alloy layers of decreasing zinc concentrations by depth to form in the steel. Oher elements such as tin, antimony and aluminum may be added to the galvanizing bath to control reaction rates, surface appearance and corrosion behavior. Hot-dipped galvanizing provides corrosion protection by developing a barrier layer and in certain conditions provide beneficial galvanic coupling of the zinc-rich layers to the steel.