Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
Corrosion behavior of commercially pure titanium (UNS R50400, ASTM GRADE 2) was investigated in presence of aggressive, bromides containing solution reported to cause more severe localized corrosion compared to chlorides.
The corrosion behavior of commercially pure titanium (UNS R50400, ASTM GRADE 2) was investigated in presence of aggressive, bromides containing solution reported to cause more severe localized corrosion compared to chlorides. To enhance localized corrosion resistance of the metal, chemical oxidation treatments were performed using NaOH 10 M solution at room temperature and at 60°C. Treatment duration effect on final corrosion resistance of samples was investigated spanning from 1 h to 72 h. After treatment optimization, the best one was compared to anodic oxidation at low potential.
To further increase corrosion resistance, annealing at 400°C and 600°C was performed after chemical oxidation and the resulting samples were tested in bromides containing solution.
Key words: Titanium, chemical oxidation, corrosion, pitting, alkaline oxidation
The corrosion behaviors of pure titanium UNS R50250 and UNS R50400 were investigated and compared with electrochemical behavior of Ti-0.2Pd and Ti-0.3Mo-0.8Ni alloys (UNS R52400 and UNS R53400 respectively).
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
To explore if the sour service performance gap between SMSS tubular and bar stock could be overcome, work was conducted to optimize the performance of 110ksi specified minimum yield strength UNS(1) S41426 bar product.
In this paper, the influence of various side-groove root configurations on critical stress intensity factor for sulfide stress cracking (KISSC) and finite-element analysis (FEA) results were focused upon.