High Velocity Oxy-Fuel (HVOF) thermal spraying is extensively used in industry to produce high-density, low porosity functional coatings to resist severe wear and corrosion. Increasingly there is a need to provide high-quality coatings that resist both wear and corrosion at high temperatures at the same time. Very few engineering data exist on such coatings. In this paper, a study of HVOF coatings of Co-Cr-Mo alloys, that relies on Laves phases or on carbides for wear and corrosion resistance is reported. The paper covers the basic metallurgy of the alloys, their design and microstructure. The oxidation and sulfidation resistances of the coatings are evaluated at 600°C. The high-temperature hardness and the roomtemperature abrasion resistance, hardness and bond strengths are compared to assess their utility in high-temperature corrosion and wear-resistant applications. The test results indicate that these alloys are strong candidate materials for providing protection in the form of HVOF coatings, in high-temperature wear and corrosion environments.
Key Words: HVOF, cobalt alloys, corrosion, high-temperature wear, oxidation, sulfidation