Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
In this research, the focus was corrosion behavior of two stainless steels (UNS S30400 and UNS S31600) and a carbon steel (UNS G10180). These were tested at 700°C in a molten NaCl-KCl-MgCl₂ eutectic salt in static air and flowing argon. Electrochemical techniques were used to characterize the corrosion behavior.m
Molten salts have emerged as viable candidates for thermal energy storage in Concentrated Solar Power (CSP) applications. Candidate chloride salts offer the advantages of being readily available and stable at high temperatures, thus opening up the possibility for increased power generation efficiency. However, molten chloride salts are corrosive; therefore, proper materials selection for plant hardware is vital. Current CSP plants use stainless steels and nickel-base alloys as materials of construction because of the desirable combination of mechanical properties and corrosion resistance. In this research project, the focus was on the corrosion behavior of two different stainless steels (UNS S30400 and UNS S31600) and a carbon steel, i.e., UNS G10180. These were tested at 700°C in a molten NaCl-KCl-MgCl₂ eutectic salt in static air and flowing argon. Electrochemical techniques were used to characterize the corrosion behavior of these materials. The morphology of the attack was determined using scanning electron microscopy coupled with energy dispersive spectroscopy (EDS). X-ray diffraction was used to characterize the corrosion products formed on the surface of the substrate. Based on these results, the candidate salt was deemed to be unsuitable for this application. In addition, all of the candidate alloys had unacceptably high corrosion rates.
Key words: conference papers, 2017 conference papers, molten chloride corrosion, thermal energy storage, concentrated solar power, heat transfer fluid, stainless steels, carbon steels
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper outlines the approach taken to select a promising salt (KCl - 44.5 wt% NaCl), and containment materials (UNS S31600 and UNS N08330 with G10180 as the control/baseline).