Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
The main goal of this work is to investigate the corrosiveness of different petroleum fractions distilled from acidic crude oil “A” at 150 to 370oC (302 to 698oF) and to find effective measures for diminishing the corrosiveness of aggressive fractions.
Every time new acidic crude oils are used, the problem of naphthenic acids (NA) arises again. Most investigations concern the corrosiveness of crude oils or gas oil fractions containing NA. In the acidic crude oil “A”, the kerosene fraction was the most corrosive.
Corrosiveness of acidic crude oil “A” and petroleum distillates towards pure iron and mild steel (C1010, A 515 Gr 70) was examined in an autoclave and in a specially designed system. It was shown that acidic crude oil “A” at 300oC (572oF) (TAN = 0.4 mg KOH/g) did not have high corrosiveness: corrosion rate of mild steel was 0.05 to 0.1 mm/y (2 to 4 mpy); but that for other fractions of “A” is very high, especially for the kerosene fraction distilled at 150 to 270oC (302 to 518oF) (0.66 mm/y). Five fractions of this “wide” kerosene fraction were cut every 20oC, TAN was measured, and corrosivity of these fractions was determined. Corrosion rate of mild steel as a function of distillate temperature range for various fractions was described with maximum for kerosene distillate 190 to 210oC (374 to 410oF) of crude oil “A” with corrosion rate of 0.97 mm/y (38.8 mpy). The corrosion rate values correlate with TAN (Total Acidity Number). Corrosion kinetics was studied during 1 to 13 days. Blending and corrosion inhibitors were examined for corrosion mitigation in the acidic kerosene. Corrosion inhibitors “P” and “N” based on phosphate esters for the kerosene distillate 190 to 210oC (374 to 410oF) were examined under laboratory and industrial conditions. Inhibitor concentrations of 25 to 75 ppm resulted in efficiency (% reduction in corrosion rate) of 74 to 94%.
Keywords: crude oil, naphthenic acid corrosion, kerosene, mild steel,
Several experiences with the use of titanium heat exchangers in refining processes are summarized. These involve distillation column overhead condensers in atmospheric crude distilling units, fluid catalytic cracking units, delayed coking units, and sour water strippers. The causes of problems are discussed. Needs for additional data are highlighted.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper discusses common amine sources and amine identification methods, the equipment commonly impacted and the steps which can be taken to address the challenge of amine contamination.
The purpose of this paper will be to: (a) review published literature to characterize and classify speciation related to the types of impurities encountered in opportunity crudes; and (b) describe and categorize published case studies of corrosion in crude unit overhead operations.