Search
Filters
Close

02500 PREDICTING OF WATER FILM THICKNESS AND VELOCITY FOR CORROSION RATE CALCULATION IN OIL-WATER FLOWS

Product Number: 51300-02500-SG
ISBN: 02500 2002 CP
Author: Hua Shi, Hongbin Wang, W. Paul Jepson, and Lee D Rhyne
$0.00
$20.00
$20.00
Experiments studying oil-water flows were conducted in a 10-cm diameter, 40-m long, horizontal pipeline. Oil (viscosity 3 cP at 25°C) and ASTM substitute seawater were used at superficial mixture velocities ranging from 0.4 to 3.0m/s. in situ water cut and in situ velocity along the pipe across section have been measured at a temperature of 25°C and a carbon dioxide partial pressure of 0.13 MPa for a whole range of water cut. A novel mathematical segregated flow model, four-layer/phase was then developed for intermediate oil-water flow patterns of semi-segregated, semi-mixed and mixed as a three-phase model by incorporating experimental data. The mixed layer in the three-layer/phase model is further divided into water-in-oil (oil-continuous) and oil-in-water (water-continuous) layers by the phase inversion point. The experimental data are in good agreement with the predicted water film height from the model. Keywords: corrosion, large diameter pipe, multiphase flow, oil-water flow, phase inversion, segregated flow model, three-layer/phase model, four-layer/phase model
Experiments studying oil-water flows were conducted in a 10-cm diameter, 40-m long, horizontal pipeline. Oil (viscosity 3 cP at 25°C) and ASTM substitute seawater were used at superficial mixture velocities ranging from 0.4 to 3.0m/s. in situ water cut and in situ velocity along the pipe across section have been measured at a temperature of 25°C and a carbon dioxide partial pressure of 0.13 MPa for a whole range of water cut. A novel mathematical segregated flow model, four-layer/phase was then developed for intermediate oil-water flow patterns of semi-segregated, semi-mixed and mixed as a three-phase model by incorporating experimental data. The mixed layer in the three-layer/phase model is further divided into water-in-oil (oil-continuous) and oil-in-water (water-continuous) layers by the phase inversion point. The experimental data are in good agreement with the predicted water film height from the model. Keywords: corrosion, large diameter pipe, multiphase flow, oil-water flow, phase inversion, segregated flow model, three-layer/phase model, four-layer/phase model
PRICE BREAKS - The more you buy, the more you save
Quantity
1+
5+
Price
$20.00
$20.00
Product tags
Also Purchased
Picture for 02243 FLOW REGIME TRANSITIONS IN LARGE DIAMETER...
Available for download

02243 FLOW REGIME TRANSITIONS IN LARGE DIAMETER INCLINED MULTIPHASE PIPELINES

Product Number: 51300-02243-SG
ISBN: 02243 2002 CP
Author: C. Kang, W. P. Jepson, and H. Wang
$20.00
Picture for 07170 Effect of Oil Type on Phase Wetting Transition and Corrosion in Oil-Water Flow
Available for download

07170 Effect of Oil Type on Phase Wetting Transition and Corrosion in Oil-Water Flow

Product Number: 51300-07170-SG
ISBN: 07170 2007 CP
Author: X. Tang, F. Ayello, C. Li, S. Nesic, J. Cai, C. Ivan, T. Cruz, and J. N. Al-Khamis
Publication Date: 2007
$20.00
Picture for 10384 Effects of Flow Regime on Solids Deposition in Multiphase Petroleum Flow
Available for download

10384 Effects of Flow Regime on Solids Deposition in Multiphase Petroleum Flow

Product Number: 51300-10384-SG
ISBN: 10384 2010 CP
Author: Zhenjin Zhu, Keith W. Sand, Patrick J. Teevens
Publication Date: 2010
$20.00