Important: AMPP System Update February 27 - March 11 – Limited Access to AMPP Digital Services. Act Now to Avoid Disruptions! - Learn More
With a history of proven performance in architectural and industrial coatings and the ability to adhere to less-than-ideally prepared substrates, alkyd resins have remained at the forefront of coating technology for well over 50 years. With such an established history, alkyds are often thought of as old technology and synonymously associated with flammable solvents and high levels of volatile organic compounds (VOC). These historical associations are not the contemporary story.
With a history of proven performance in architectural and industrial coatings and the ability to adhere to less-than-ideally prepared substrates, alkyd resins have remained at the forefront of coating technology for well over 50 years. With such an established history, alkyds are often thought of as old technology and synonymously associated with flammable solvents and high levels of volatile organic compounds (VOC). These historical associations are not the contemporary story. New technology has been developed. Several commercial techniques now exist to create stable, high-performing alkyds in water, with almost no VOC. This paper will discuss these recent technology developments. Alkyd emulsions, alkyd dispersions, waterdilutable alkyds and water-reducible alkyds will be reviewed and discussed to help the attendee understand the strengths and limitations of these and other waterbased technologies. The attendee will walk away with an understanding of the history, present state and future direction of alkyd resin technology for coatings.
NACE TM0177 Method B is a standard method for evaluating stress-corrosion cracking resistance. Here, Digital Image Correlation determined strain distributions over the surface of bend samples made from corrosion-resistant alloys.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper will present both laboratory and field trial results as evaluated with ASTM D610 for Zn-Ni nanolaminated and comparative coated fasteners and discuss how utilizing ASTM D610 helps to ensure objective, consistent red rust measurements.
The industry has been developing in-situ techniques to measure pipe properties in lieu of destructive approaches. This paper will review the techniques available to meet regulation changes announced in 2016 and propose procedural applications to improve repeatability and reliability.