Server maintenance is scheduled for Saturday, December 21st between 6am-10am CST.
During that time, parts of our website will be affected until maintenance is completed. Thank you for your patience.
Use GIVING24 at checkout to save 20% on eCourses and books (some exclusions apply)!
After a loss of coolant accident a nuclear reactor needs to be flooded, quenching the fuel rods, which would suffer a thermal shock. Six commercial alloys of nuclear interest were tested for resistance to quenching measures after exposure to air at 1200°C for 2 hours.
Since the Fukushima disaster of March 2011 nuclear fuel vendors are engaged in finding a fuel system that would be more resistant to accidents such as the loss of coolant.One option is to replace the current zirconium alloys cladding for FeCrAl alloys. Among other properties the proposed cladding should be resistant to thermal shock or quenchingwhich may occur when the reactor is flooded with fresh cool water. The current study compares the thermal shock resistance of several nuclear engineering alloys.
Keywords: Nuclear materials, FeCrAl alloys, accident tolerant, Fe22Cr5Al3Mo, quenching, mechanical properties.
To restrain the failure of plate heat exchanger in customer boiler working fluid, the effect of crevice former type on the corrosion behavior of Type 316L (UNS S31603) stainless steel plate was investigated using electrochemical methods and surface analysis in chloride-containing synthetic tap water.
We are unable to complete this action. Please try again at a later time.
If this error continues to occur, please contact AMPP Customer Support for assistance.
Error Message:
Please login to use Standards Credits*
* AMPP Members receive Standards Credits in order to redeem eligible Standards and Reports in the Store
You are not a Member.
AMPP Members enjoy many benefits, including Standards Credits which can be used to redeem eligible Standards and Reports in the Store.
You can visit the Membership Page to learn about the benefits of membership.
You have previously purchased this item.
Go to Downloadable Products in your AMPP Store profile to find this item.
You do not have sufficient Standards Credits to claim this item.
Click on 'ADD TO CART' to purchase this item.
Your Standards Credit(s)
1
Remaining Credits
0
Please review your transaction.
Click on 'REDEEM' to use your Standards Credits to claim this item.
You have successfully redeemed:
Go to Downloadable Products in your AMPP Store Profile to find and download this item.
This paper outlines the essential features required in a software package that has sufficient capability to accurately predict and mitigate AC induction effects upon pipelines for a majority of rights-of-way.
Under deposit corrosion (UDC) and microbiologically influenced corrosion (MIC) are threats to dead legs and low flow/intermittent flow pipelines. Deposit characterization methods, corrosion mechanisms, mitigation methods and monitoring are addressed.